Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий АКАДЕМИЯ ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ

В. В. ТЕРЕБНЕВ

СПРАВОЧНИК РУКОВОДИТЕЛЯ ТУШЕНИЯ ПОЖАРА

Тактические возможности пожарных подразделений

Москва 2004

Теребнев В.В.

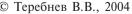
Справочник руководителя тушения пожара. Тактические возможности пожарных подразделений. — М.: Пожкнига, 2004 г. — 256 с., ил.

ISBN

Даны: тактико-технические характеристики основных и специальных пожарных автомобилей; пожарно-технического вооружения, табели положенности.

Дана подробная характеристика основных огнетушащих веществ и средств их подачи, основные параметры развития и тушения пожара.

Раскрыты особенности подачи воды при ее недостатке на месте пожара. Изложены понятия тактических возможностей пожарных подразделений, приведена методика их определения:


- при боевом развертывании;
- при подаче огнетушащих веществ;
- при спасании людей:
- при разборке конструкций;
- при работе в средствах защиты органов дыхания.

Предложена методика расчета сил и средств для тушения пожаров, и впервые дана методика нормирования боевых действий пожарных подразделений.

Даны справочные таблицы, графики, расчетные материалы, примеры решения тактических задач и другие сведения, необходимые для практического использования оперативными работниками.

ББ	K	38	3.	96
УДК	61	4.	8	42

ISBN	 © Te

[©] Пожкнига, 2004

ВВЕДЕНИЕ

Тушение пожара с позиции пожарной тактики — это комплекс управленческих решений, направленных на обеспечение безопасности людей, животных, спасение материальных ценностей и ликвидацию горения.

Тушение пожаров в современных условиях требует применения наиболее эффективных огнетушащих веществ и приемов их подачи. В пособии дана подробная характеристика основных огнетушащих веществ, рассмотрены условия применения, интенсивность их подачи в зависимости от физико-химических свойств горящих веществ и материалов, а также даны тактико-технические характеристики приборов подачи.

Приведены тактико-технические характеристики специальных пожарных автомобилей, схемы их боевого использования, схемы забора и подачи воды, перекачки и подвоза ее к месту пожара автоцистернами. В таблице указано расстояние между машинами, осуществляющими подачу воды перекачкой.

В учебном пособии даны понятия о тактических возможностях пожарных подразделений, рассмотрена методика их определения:

- по боевому развертыванию;
- по подаче огнетушащих веществ;
- по спасанию людей;
- по вскрытию и разборке конструкций;
- при использовании индивидуальных средств защиты.

Впервые дается методика нормирования боевых действий пожарных подразделений.

Кроме того, работники пожарной охраны должны в совершенстве владеть методикой расчета сил и средств, необходимых для тушения пожаров, проведения исследований процессов горения, а также тушения различных веществ и материалов. Они обязаны уметь качественно разрабатывать оперативные документы по пожаротушению, конспекты и методические разработки на проведение занятий по боевой подготовке.

В предлагаемом пособии приведено много справочных таблиц и схем, отражены потери напора в одном рукаве магистральной линии, определены потери напора на насосе при различных схемах подачи воды, дан ориентировочный расчет продолжительности работы водяных стволов от пожарных автомобилей.

Данное пособие предназначено для использования в учебном процессе курсантами и слушателями пожарно-технических учебных заведений, в учебных подразделениях Государственной противопожарной службы МЧС России. Также оно может быть использовано начальствующим составом при анализе боевых действий подразделений на пожарах и в процессе самостоятельной работы.

ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

ПОЖАР — неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

ТУШЕНИЕ ПОЖАРА — комплекс управленческих решений и боевых действий, направленных на обеспечение безопасности людей, животных, спасение материальных ценностей и ликвидацию горения.

БОЕВАЯ ГОТОВНОСТЬ (боеготовность) — состояние сил и средств гарнизона, подразделения, противопожарного формирования, обеспечивающее успешное выполнение задачи, возложенной на него Боевым Уставом.

БОЕСПОСОБНОСТЬ — способность подразделения выполнить боевую задачу в пределах своих тактических возможностей.

СИЛЫ И СРЕДСТВА ПОЖАРНОЙ ОХРАНЫ — личный состав пожарной охраны, пожарная техника, средства связи и управления, огнетушащие вещества и иные технические средства, находящиеся на вооружении пожарной охраны.

ПОЖАРНАЯ ТЕХНИКА — технические средства для предотвращения, ограничения развития, тушения пожара, защиты людей и материальных ценностей на пожаре.

ПОЖАРНО-ТЕХНИЧЕСКОЕ ВООРУЖЕНИЕ — комплект, состоящий из пожарного оборудования, ручного пожарного инструмента, пожарных спасательных устройств, средств индивидуальной защиты, технических устройств для конкретных пожарных машин в соответствии с их назначением.

ПОЖАРНОЕ ОБОРУДОВАНИЕ — оборудование, входящее в состав коммуникаций пожаротушения (рукавные линии, развертки, пожарный кран, стволы и т.п.), а также средства технического обслуживания этого оборудования.

БОЕВОЕ ДЕЖУРСТВО — период непрерывного несения службы личным составом караула или дежурной смены, включая участие их в тушении пожара.

РАСПИСАНИЕ ВЫЕЗДА — установленный в соответствии с законодательством и Уставом порядок привлечения сил и средств гарнизона к тушению пожаров в городе или населенном пункте.

ПЛАН ПРИВЛЕЧЕНИЯ СИЛ И СРЕДСТВ — расписание выезда, устанавливающее порядок привлечения сил и средств гарнизона (гарнизонов) к тушению пожаров на территории субъекта Российской Федерации, сельского района.

РАЙОН ВЫЕЗДА ПОДРАЗДЕЛЕНИЯ — территория, на которой расписанием выезда предусмотрено первоочередное направление подразделения по вызову на пожар.

НОМЕР (РАНГ) ПОЖАРА — условный признак сложности пожара, определяющий в расписании выезда необходимый состав сил и средств гарнизона, привлекаемых к тушению пожара.

ОПЕРАТИВНАЯ ОБСТАНОВКА — совокупность обстоятельств и условий в районе выезда подразделения (гарнизона), влияющих на определение задач и характер их выполнения.

ЧРЕЗВЫЧАЙНАЯ СИТУАЦИЯ — обстановка, при которой сил и средств гарнизона пожарной охраны, а также служб жизнеобеспечения, дислоцированных на данной территории недостаточно для ликвидации пожара.

ПЛАН ПОЖАРОТУШЕНИЯ — оперативный документ РТП (штаба), прогнозирующий обстановку на пожаре и устанавливающий основные вопросы организации тушения развившегося пожара.

КАРТОЧКА ПОЖАРОТУШЕНИЯ — оперативный документ, содержащий данные об объекте, наличии людей и путях их эвакуации.

ОЦЕНКА ОБСТАНОВКИ НА ПОЖАРЕ — вывод, сформированный на основе результатов разведки пожара, обобщения и анализа полученных свелений.

ТУШЕНИЕ ПОЖАРА — боевые действия, направленные на спасение людей, имущества и ликвидацию пожара.

БОЕВЫЕ ДЕЙСТВИЯ — предусмотренное Уставом организационное применение сил и средств пожарной охраны для выполнения основной боевой залачи.

ОСНОВНАЯ БОЕВАЯ ЗАДАЧА — достижения локализации и ликвидации пожара в сроки и в размерах, определяемых возможностями сил и средств, привлеченных на тушение пожара.

ЛОКАЛИЗАЦИЯ ПОЖАРА — стадия (этап) тушения пожара, на которой отсутствует или ликвидирована угроза людям или животным, прекращено распространение пожара и созданы условия для его ликвидации имеющимися силами и средствами.

ЛИКВИДАЦИЯ ПОЖАРА — стадия (этап) тушения пожара, на которой прекращено горение, и устранены условия для его повторного возникновения.

БОЕВАЯ ПОЗИЦИЯ — место расположения сил и средств и ведение боевых действий по спасению людей и имущества, подаче огнетушащих веществ, выполнению специальных работ на пожаре.

РЕШАЮЩЕЕ НАПРАВЛЕНИЕ — направление боевых действий, на котором использование сил и средств пожарной охраны в данный момент времени, обеспечивает наилучшие условия решения основной боевой задачи.

УПРАВЛЕНИЕ БОЕВЫМИ ДЕЙСТВИЯМИ — целенаправленная деятельность должностных лиц, РТП (штаба) по руководству личным составом и иными участниками тушения пожара.

ОПЕРАТИВНЫЙ ШТАБ НА ПОЖАРЕ — временно сформированный орган РТП для управления боевыми действиями на пожаре.

ТЫЛ НА ПОЖАРЕ — участок (территория), на котором сосредоточены силы и средства, обеспечивающие боевые действия по тушению пожара.

ОПАСНЫЙ ФАКТОР ПОЖАРА — фактор пожара, воздействия которого на людей или материальные ценности может привести к ущербу.

БОЕВОЕ РАЗВЕРТЫВАНИЕ — приведение сил и средств в состояние готовности для немедленного выполнения боевых задач на пожаре.

БОЕВОЙ РАСЧЕТ — личный состав на пожарном автомобиле в определенном количестве, имеющий готовность к выполнению боевых задач на пожаре, аварии.

БОЕВОЙ УЧАСТОК — участок в здании или на местности, где работают силы и средства по выполнению конкретной задачи и под единым руководством.

БЕЗОПАСНОЕ МЕСТО — место, удаленное от источника опасности, где обеспечивается защита людей, животных, веществ, материалов и других объектов от опасных факторов техногенных и природных проявлений.

ВОДЯНОЙ ПОЖАРНЫЙ СТВОЛ — устройство для подачи определенного вида водяной струи.

ВЕРОЯТНОСТЬ ВОЗНИКНОВЕНИЯ ПОЖАРА — математическая величина возможности появления необходимого и достаточного условия возникновения загорания (пожара).

ВЫДВИЖНАЯ ПОЖАРНАЯ ЛЕСТНИЦА — переносная пожарная лестница, состоящая из трех колен, которые перемещаются с помощью цепной тяги на определенную высоту.

ГАЗОДЫМОЗАЩИТНИК — лицо рядового или начальствующего состава пожарной охраны, имеющее специальную подготовку и выполняющее боевую задачу в непригодной для дыхания среде в составе звена ГЛЗС.

ЗОНА ГОРЕНИЯ — часть пространства, в котором протекают процессы термического разложения или испарения горючих веществ и материалов в объеме диффузионного факела пламени.

ЗОНА ТЕПЛОВОГО ВОЗДЕЙСТВИЯ — часть пространства, примыкающего к зоне горения, в которой протекают процессы теплового обмена между поверхностью пламени и материалами, объектами, людьми и животными. окружающими его.

ЗОНА ЗАДЫМЛЕНИЯ — часть пространства, примыкающего к зонам горения и теплового воздействия, заполненная дымовыми газами с концентрациями вредных веществ, создающих угрозу для жизни.

РУКАВНОЕ РАЗВЕТВЛЕНИЕ (разветвление) — устройство для разделения водяного потока по рукавным линиям и регулирования ее расхода.

РУКАВНЫЙ ЗАЖИМ — устройство для устранения протекания воды из образовавшегося отверстия в напорных рукавах и обеспечения непрерывной подачи огнетушащего средства к месту пожара.

РУКАВНЫЙ МОСТИК — устройство для защиты пожарных рукавов от повреждений при переезде их транспортными средствами.

РУКАВНЫЙ ПЕРЕХОДНИК — арматура для соединения двух пожарных головок на рукавах с разными их размерами сечений или разного типа.

СПАСАТЕЛЬНЫЙ РУКАВ — пожарное спасательное устройство из специальной ткани в виде рукава для скользящего спуска спасаемых с этажей здания.

СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ — технические средства индивидуального пользования для предохранения человека от опасных факторов пожара.

ФРОНТ ПОЖАРА — часть периметра пожара, по направлению которой он распространяется.

ФЛАНГ ПОЖАРА — левая и правая части периметра пожара, где горение распространяется перпендикулярно фронту пожара.

ПОЖАРНЫЙ ГИДРОЭЛЕВАТОР — устройство эжекторного типа для забора воды из водоисточника с уровнем, превышающим высоту всасывания насоса, или при невозможности подъезда к водозабору.

ПОЖАРНЫЙ ПЕНОСМЕСИТЕЛЬ — устройство для получения раствора пенообразователя в воде с заданными концентрацией и расходом.

ПОЖАРНЫЙ ПОЕЗД — железнодорожный состав, оснащенный средствами подачи и запасами воды и пены для тушения пожаров, ликвидации аварий на железной дороге и вблизи нее.

РУКАВНАЯ ЗАДЕРЖКА — устройство для закрепления по высоте пожарных напорных рукавов, по которым подается вода или раствор пенообразователя.

РУКАВНАЯ КАТУШКА — устройство для размещения намоткой предварительно соединенных между собой напорных пожарных рукавов и их быстрой прокладки по земле.

1. ОГНЕТУШАЩИЕ ВЕЩЕСТВА И МАТЕРИАЛЫ

К огнетушащим относятся вещества и материалы, с помощью которых прекращается горение.

Огнетушащие вещества оказывают комбинированное воздействие на процесс горения вещества. Вода, например, может охлаждать и изолировать (или разбавлять) источник горения; пенные средства действуют изолирующе и охлаждающе; порошковые составы изолируют и тормозят реакцию горения; наиболее эффективные газовые вещества действуют одновременно как разбавители и как тормозящие реакцию горения.

Все огнетушащие вещества в зависимости от принципа прекращения горения разделяются на виды:

- охлаждающие зону реакции или горящие вещества (вода, водные растворы солей, твердый диоксид углерода и др.);
- разбавляющие вещества в зоне реакции горения (инертные газы, водяной пар, тонкораспыленная вода, газоводяные смеси, продукты взрыва и др.);
- изолирующие вещества от зоны горения (химическая и воздушномеханическая пены, огнетушащие порошки, негорючие сыпучие вещества, листовые материалы и др.);
- химически тормозящие реакцию горения (составы 3.5; хладоны 114B, 13B1 и др.).

Однако, любое огнетушащее вещество обладает каким-либо одним доминирующим свойством.

Быстро ликвидировать горение можно при правильном выборе средств и способов ликвидации горения. Для этого надо знать свойства горючих веществ и характер (вид) процесса горения; условия, при которых протекает горение; метеорологические условия; иметь в виду трудоемкость и безопасность работ личного состава по ликвидации горения и применять наиболее эффективное огнетушащее вещество.

В табл. 1.1. приведены классы пожаров и средства их ликвидации.

1.1. Огнетушащие вещества охлаждения

Вода — основное огнетушащее вещество охлаждения, наиболее доступное и универсальное. Хорошее охлаждающее свойство воды обусловлено ее высокой теплоемкостью [4187 Дж/(кг/град) (1 ккал/(кг/град)] при нормальных условиях. При попадании на горящее вещество, вода частично испаряется и превращается в пар.

При испарении 1 л воды образует 1700 л пара, благодаря чему кислород вытесняется из зоны пожара водяным паром. Вода, имея высокую теплоту парообразования [2236 кДж/кг (534 ккал/кг)], отнимает от горящих

Таблица 1.1 Классификация пожаров по ГОСТ 27331 и рекомендуемые огнетушащие вещества

Класс пожа- ра	Характеристика класса	Под- класс пожара	Характеристика подкласса	Рекомендуемые огнетушащие вещества
A	Горение твердых веществ	A1	Горение твердых веществ, сопровождаемое тлением (например, древесина, бумага, уголь, текстиль)	Вода со смачивателями, хладоны, порошки типа АВСЕ
		A2	Горение твердых веществ, не сопровождаемое тлением (каучук, пластмассы)	Все виды огнетушащих средств
В	Горение жидких веществ	B1	Горение жидких веществ, нерастворимых в воде (бензин, нефтепродукты), а также сжижаемых твердых веществ (парафин)	Пена, мелкораспыленная вода, хладоны, порошки типа АВСЕ и ВСЕ
		B2	Горение полярных жидких веществ, растворимых в воде (спирты, ацетон, глицерин и др.)	Пена на основе спе- циальных пенообра- зователей, мелкорас- пыленная вода, хла- доны, порошки типа АВСЕ и ВСЕ
C	Горение газообразных веществ		Бытовой газ, пропан, водород, аммиак и др.	Объемное тушение и флегматизация газовыми составами, порошки типа АВСЕ и ВСЕ, вода для охлаждения оборудования
Д	Горение металлов и металло- содержа-	Д1	Горение легких металлов и их сплавов (алюминий, магний и др.), кроме щелочных	Специальные порошки
	щих ве-	Д2	Горение щелочных металлов (натрий, калий и др.)	Специальные порошки
		Д3	Горение металлосодержащих соединений (металлоорганические соединения, гидриды металлов)	Специальные порошки

Примечание. Класс пожара Е — объект тушения может находиться под напряжением электрического тока.

материалов и продуктов горения большое количество теплоты. Вода обладает высокой термической стойкостью; ее пары только при температуре выше 1700°С могут разлагаться на водород и кислород. В связи с этим тушение водой большинства твердых материалов (древесины, пластмасс, каучука и др.) безопасно, так как их температура горения не превышает 1300°С.

Вода почти со всеми твердыми горючими веществами не вступает в реакцию, за исключением щелочных и щелочно-земельных металлов (калия, натрия, кальция, магния и др.) и некоторых других веществ.

Вещество или материал	Воздействие воды
Азид свинца	Взрывается при увеличении влажности до 30%
Алюминий, магний, цинк	При горении разлагают воду на водород и
	кислород
Гидриды щелочных и	Выделяют водород
щелочноземельных металлов	
Гремучая ртуть	Взрывается от удара струи
Калий, кальций, натрий, рубидий,	Реагируют с водой, выделяют водород
цезий металлические	
Карбиды алюминия, бария, кальция	Разлагаются с выделением горючих газов
Карбиды щелочных металлов	Взрываются
Кальций, натрий фосфористые	Выделяют самовоспламеняющийся на воздухе
	фосфористый водород
Нитроглицерин	Взрывается от удара струи
Селитра	Попадание воды в расплав селитры вызывает
	сильный взрывообразный выброс и усиление
	горения
Серный ангидрид	Взрывообразный выброс
Сесквихлорид	Взрывается
Силаны	Выделяют самовоспламеняющийся на воздухе
Термит, электрон	гидрид кремния
Титан и его сплавы	Разлагает воду на водород и кислород
Триэтилалюминий	То же
Хлорсульфоновая кислота	Взрывается

Наибольший огнетушащий эффект достигается при подаче воды в распыленном состоянии, так как увеличивается площадь одновременного равномерного охлаждения, вода быстро нагревается и превращается в пар, отнимая большое количество теплоты. Чтобы избежать ненужных потерь, распыленную воду применяют в основном при сравнительно небольшой высоте пламени, когда можно подать ее между пламенем и нагретой поверхностью (например, при горении подшивки перекрытий, стен и перегородок, обрешетки крыши, волокнистых веществ, пыли, темных нефтепродуктов и др.). Распыленные водяные струи применяют также для снижения температуры в помещениях, защиты от теплового излучения (водяные завесы), для охлаждения нагретых поверхностей строительных конструкций сооружений, установок, а также для осаждения дыма.

В зависимости от вида горящих материалов используют распыленную воду различной степени дисперсности.

При тушении пожаров твердых материалов, смазочных масел применяют струи со средним диаметром капель около 1 мм; при тушении горящих

спиртов, ацетона, метанола и некоторых других горючих жидкостей — распыленные струи, состоящие из капель диаметром 0,2...0,4 мм.

Сплошные струи используют при тушении наружных и открытых внутренних пожаров, когда необходимо подать большое количество воды на значительное расстояние или если воде необходимо придать ударную силу (например, при тушении газонефтяных фонтанов, открытых пожаров, а также пожаров в зданиях больших объемов, когда близко подойти к очагу горения невозможно; при охлаждении с большого расстояния соседних объектов, металлических конструкций, резервуаров, технологических аппаратов).

Сплошные струи нельзя применять там, где может быть мучная, угольная и другая пыль, а также при горении жидкостей в резервуарах. Для равномерного охлаждения площади горения сплошную струю воды перемещают с одного участка на другой. Когда с увлажненного горючего вещества сбито пламя и горение прекращено, струю переводят в другое место.

Как огнетушащее средство, вода плохо смачивает твердые материалы из-за высокого поверхностного натяжения (72,8-103 Дж/м²), что препятствует быстрому распределению ее по поверхности, прониканию в глубь горящих твердых материалов и замедляет охлаждение.

Для уменьшения поверхностного натяжения и увеличения смачивающей способности в воду добавляют поверхностно-активные вещества (ПАВ). На практике используют растворы ПАВ (смачивателей), поверхностное натяжение которых в 2 раза меньше, чем у воды. Оптимальное время смачивания 7...9 с. Соответствующие этому времени концентрации смачивателей в воде считают оптимальным и рекомендуют для тушения. Применение растворов смачивателей позволяет уменьшить расход воды на 35...50% и снизить на 20...30%, что обеспечивает тушение одним и тем же объемом огнетушащего вещества на большей площади. Рекомендуемые концентрации смачивателей (%), в водных растворах для тушения пожаров приведены в табл. 1.2.

Твердый диоксид углерода (углекислота), как и вода, может быстро отнять теплоту от нагретого поверхностного слоя горящего вещества. При температуре -79° С он представляет собой мелкокристаллическую массу плотностью 1,53 кг/м³. Такая масса образуется при переходе диоксида углерода из жидкой в газообразную фазу при быстром увеличении объема.

Жидкий диоксид углерода в результате расширения переходит в твердое состояние и выбрасывается в виде хлопьев, похожих на снежные, с температурой (-78,5°С). Под влиянием теплоты, выделяющейся на пожаре, твердый диоксид углерода, минуя жидкую фазу, превращается в газ. При этом он является средством не только охлаждения, но и разбавления горящих веществ. Теплота испарения твердого диоксида углерода значительно меньше, чем воды — $0.57 \cdot 103 \text{ кДж/kr}$ (136,9 ккал/кг), однако из-за большой разницы температур твердого диоксида углерода и нагретой поверхности охлаждается поверхность гораздо быстрее, чем при применении воды. Твердый диоксид углерода прекращает горение всех горючих веществ, за исключением магния и его сплавов, металлического натрия и калия. Он неэлектропроводен и не взаимодействует с горючими веществами

и материалами, поэтому его применяют при тушении электроустановок, двигателей и моторов, а также при пожарах в архивах, музеях, выставках и т. д. Подают твердый диоксид углерода из огнетушителей, передвижных и стационарных установок.

Рекомендуемые концентрации смачивателей

Таблица 1.2

Смачиватель	Оптимальная концентрация (% к воде)				
Смачиватель ДБ	0,20,25				
Сульф	анол				
НП-1	0,30,5				
НП-5	0,30,5				
Б	1,51,8				
Никаль НБ	0,70,8				
Вспомогатель	ное веществе				
ОП-7	1,52,0				
ОП-8	1,52,0				
Эмульгатор ОП-4	1,952,1				
Пенообразователь					
ПО-1	3,54,0				
ПО-1Д	6,06,5				

1.2. Огнетушащие вещества изоляции

К огнетушащим веществам, оказывающим изолирующее действие, относятся пена, огнетушащие порошки, негорючие сыпучие вещества (песок, земля, флюсы, графит и др.), листовые материалы (войлочные, асбестовые, брезентовые покрывала, щиты). В некоторых случаях, например, при тушении сероуглерода, в качестве изолирующего вещества может быть использована вода.

Пена — наиболее эффективное и широко применяемое огнетушащее вещество изолирующего действия — представляет собой коллоидную систему из жидких пузырьков, наполненных газом.

Пленка пузырьков содержит раствор ПАВ в воде с различными стабилизирующими добавками. Пены подразделяются на воздушно-механическую и химическую.

В настоящее время в практике пожаротушения в основном применяют воздушно-механическую пену. Для ее получения используют различные пенообразователи.

Воздушно-механическую пену получают смешением водных растворов пенообразователей с воздухом в пропорциях от 1:3 до 1:1000 и более в специальных стволах (генераторах).

Изолирующее свойство пены — способность препятствовать испарению горючего вещества и прониканию через слой пены паров, газов и различных излучений. Изолирующие свойства пены зависят от ее стойкости, вязкости и дисперсности. Низкократная и среднекратная воздушно-меха-

ническая пена на жидкостях обладает изолирующей способностью в пределах 1,5...2,5 мин при толщине изолирующего слоя 0,1...1 м.

Низкократными пенами тушат в основном горящие поверхности. Они хорошо удерживаются и растекаются по поверхности, препятствуют прорыву горючих паров, обладают значительным охлаждающим действием.

Низкократную пену используют для тушения пожаров на складах древесины, так как ее можно подать струей значительной длины; кроме того, она хорошо проникает через неплотности и удерживается на поверхности, обладает высокими изолирующими и охлаждающими свойствами.

Высокократную пену, а также пену средней кратности применяют для объемного тушения, вытеснения дыма, изоляции отдельных объектов от действия теплоты и газовых потоков (в подвалах жилых и производственных зданий; в пустотах перекрытий; в сушильных камерах и вентиляционных системах и т. п.).

Пена средней кратности является основным средством тушения пожаров нефти и нефтепродуктов в резервуарах и разлитых на открытой поверхности.

Воздушно-механическую пену часто применяют в сочетании с огнетушащими порошковыми составами, нерастворимыми в воде. Огнетушащие порошковые составы высокоэффективны для ликвидации пламенного горения, но почти не охлаждают горящую поверхность. Пена компенсирует этот недостаток и дополнительно изолирует поверхность.

Пены — достаточно универсальное средство и используются для тушения жидких и твердых веществ, за исключением веществ, взаимодействующих с водой. Пены электропроводны и коррозируют металлы. Наиболее электропроводна и активна химическая пена. Воздушно-механическая пена менее электропроводна, чем химическая, однако, более электропроводна, чем вода, входящая в состав пены.

1.2.1. Пенообразователи и пены

Классификация пенообразователей. Пенообразователи и пены различаются:

- по назначению,
- по структуре,
- по химической природе поверхностно-активного вещества и
- по способу образования.

По природе основного поверхностно-активного вещества:

- протеиновые (белковые);
- синтетические углеводородные;
- фторсодержащие.

По способу образования:

- химические (конденсационные);
- воздушно-механические;
- барботажные;

- струйные.

По назначению пенообразователи различают:

- обшего назначения:
- целевого назначения;
- пленкообразующие.

По структуре пены подразделяются на высокодисперсные и грубодисперсные.

По кратности:

- пены низкой кратности и пеноэмульсии;
- пены средней кратности;
- пены высокой кратности.

Влияние состава пенообразователя на свойства пены.

Пенообразователи целевого назначения отличаются определенной направленностью состава. Например, образующие очень устойчивую пену, длительно не разрушающуюся на открытом воздухе.

Такие пены хорошо сохраняются на поверхности потушенного бензина и нефти, препятствуя повторному воспламенению горючего.

Пенообразователи являются многокомпонентными растворами, например пенообразователь "Сампо", в состав которого входят алкилсульфаты, высшие жирные спирты, карбамид, бутанол и бутилацетат.

Для тушения спиртов и водорастворимых органических соединений используют пенообразователи, в состав которых входят природные или синтетические полимеры, которые коагулируют при смешении водного раствора с растворителем. В результате коагуляции на поверхности органического растворителя образуется толстая полимерная пленка, которая механически защищает пену от контакта с растворителем.

Широко использовалось природное высокомолекулярное соединение — альгинат натрия, который добывают из морских водорослей — ламинарий. При контакте пены со спиртом полимер коагулирует, образуя толстую полимерную пленку на поверхности спирта, которая предотвращает непосредственный контакт пены со спиртом.

К пенообразователям целевого назначения также относятся морозоустойчивые пенообразователи, которые содержат от 15 до 35% полиэтиленгликолей. Универсальные и многоцелевые отечественные пенообразователи "Форэтол" и "Универсальный" пригодны для тушения любых горючих жидкостей, но особенно высока их эффективность при тушении метанола и этилового спирта. Причем тушение происходит без существенного их разбавления водой.

Пленкообразующие пенообразователи, например "Подслойный" (Новороссийск), способны самопроизвольно формировать на поверхности углеводородов водную пленку, которая предотвращает поступление паров воды в зону горения. Этот эффект достигается за счет резкого понижения поверхностного натяжения водного раствора до величины порядка 15-18 мН/м.

Устойчивость пены. Пена — это структурированная дисперсная система, состоящая из деформированных пузырьков воздуха и жидкости,

содержащейся в пленках и каналах.

Отношение объема пены $V_{_{1}}$ к объему жидкости в пене $V_{_{0}}$ называется кратностью K:

$$K = V_1 / V_0.$$

Пена является неустойчивой дисперсной системой. С момента образования в пене начинается процесс диффузионного переноса воздуха из маленьких пузырьков в большие, в результате число пузырьков со временем уменьшается, а их средний размер увеличивается.

Водный раствор через систему каналов постепенно выделяется из пены. Этот процесс традиционно называют синерезисом, по аналогии с термином, принятым для обозначения потери воды в студнях.

Общей характеристикой устойчивости пены является ее способность сохранять параметры исходной структуры.

Различают следующие показатели устойчивости пены:

<u>Устойчивость объема пены.</u> Характеризуется временем разрушения 25% от исходного объема.

Устойчивость к обезвоживанию (к синерезису). Характеризуется временем выделения из пены 50% жидкости.

<u>Устойчивость структурная.</u> Характеризуется временем изменения среднего диаметра пузырьков на 25% от исходной величины.

<u>Контактная устойчивость</u> на поверхности полярных горючих жидкостей. Характеризуется временем полного разрушения пены.

<u>Термическая устойчивость.</u> Характеризуется временем разрушения всего объема пены под действием теплового потока от факела пламени.

<u>Устойчивость изолирующего действия.</u> Характеризуется временем, в течение которого слой пены препятствует воспламенению жидкости открытым источником пламени.

Причиной контактного теплового разрушения пены является десорбция молекул поверхностно-активного вещества - пенообразователя, потеря поверхностной активности молекул при высокой температуре раствора в пленках пены.

При контакте пены с органическими водорастворимыми ГЖ в каналах пены образуется смешанный раствор, в котором молекулы пенообразователя хорошо растворимы. В таком растворителе не образуется мицелл, поскольку растворы являются истинными, молекулярными, т. е. молекулы не адсорбируются па границе "раствор-воздух".

Аналогичная ситуация возникает и при нагревании раствора пенообразователя. По мере увеличения температуры повышается молекулярная (истинная) растворимость молекул ПАВ и они перестают концентрироваться на поверхности.

Снижение поверхностной активности молекул ПАВ происходит по мере увеличения в водно-органической смеси концентрации горючего компонента или по мере увеличения температуры водного раствора.

<u>Кратность пены.</u> В зависимости от величины кратности пены разделяют на четыре группы:

- пеноэмульсий, K < 3;
- пены низкой кратности, 3 < K < 20;
- пены средней кратности. 20 < K < 200:
- пены высокой кратности, K > 200.

В практике тушения пожаров используются все четыре вида пены, которые получают различными способами и устройствами:

- пеноэмульсии соударением свободных струй раствора;
- пены низкой кратности пеногенераторами, в которых эжектируемый воздух перемешивается с раствором пенообразователя;
- пена средней кратности образуется на металлических сетках эжекционных пеногенераторов;
- пена высокой кратности получается на генераторах с перфорированной поверхностью тонких металлических листов или на специальном оборудовании, в результате принудительного наддува воздуха в пеногенератор от вентилятора.

Устойчивость пены к обезвоживанию во многом определяет их изолирующее действие, которое выражается в снижении скорости поступления паров горючего в зону горения. Чем больше пена теряет жидкости, тем тоньше становятся пленки пены, тем меньше они препятствуют испарению горючего.

Скорость синерезиса определяется эффективным диаметром пенных каналов, высотой слоя пены и подвижностью поверхности пенных каналов, высотой слоя пены и подвижностью поверхности пенных каналов. Если стенки каналов жесткие, то течение жидкости будет определяться вязкостью раствора.

1.2.2. Огнетушащие порошковые составы (ОПС)

Огнетушащее действие ОПС заключается в основном в изоляции горящей поверхности от воздуха, а при объемном тушении — в ингибирующем действии порошков, связанным с обрывом цепей реакции горения.

Химический состав и назначение компонентов огнетушащих порошков. Основные компоненты порошков:

сповные компоненты порошков.
- негорючая основа 90-95%;
гидрофобизатор 3-5%;
депрессант 1-3%;
- антиоксиданты
 целевые добавки 1-3%.
Примеры компонентов порошков.
Антиоксиданты:
меламин (для тушения щелочных металлов).
Диспергаторы:
карбамид в сплавах с содой ("Мониекс").
Наполнители:

фреоны (Порошок СИ).

Примеры компонентов огнетушащих порошков.

٥ Ú E

					Гипы пр	именя	емых пе	энообразов:	ателей и в	Типы применяемых пенообразователей и их параметры	_					
å									Марка							
Ë	Показатели	ПО -1	ПО-1Д	ЛО-6К	по-заи	TAAC	САМПО	Подслойный	потечоф	ПО-1 ПО-1Д ПО-6К ПО-3АИ ТЭАС САМПО ПОДСЛОЙНЫЙ ФОРЭТОЛ УНИВЕРСАЛЬНЫЙ 6-ЦТ 6-МТ 6-ТС	6-ЦТ	тм-9	6-TC	6-TC-M 6-TC-B	6-TC-B	Ф1-9
1	Биологическая															
	разлагаемость	6/ж	€/ж	9/ж	М/9	М/9	М/9	6/ж	6/ж	6/ж	%06 %06	%06	ı	%06	%06	%08
	раствора															
2	2 Кинематическая															Ī
	вязкость ѝ при	70	70	70	10	70	100	150	20	100	100	100	70	200	200	000
	$ 20^{\circ}\text{C}, \text{ $\hat{\text{v}}$} \cdot 10^{-6}\text{M}^2/\text{c}, $			7	0.1	f		001	OC.	100	3	001		7007	207	3
	не более															
3	3 Плотность с,										1.0	0 1	1	1.0	1	-
	при 20° С, с. 10^{3} 1,10 1,05 1,05	1,10	1,05	1,05	1,02	1,00	1,01	1,10	1,10	1,30	7,0	1,0-	1,0-1,0-1,0-	-0,1	-0,1	-0,1
	KT/M ³								,		1,2	1,2	1,2	1,2	1,2	7,1
4	4 Температура	0	2	2	,	٥	10	01/	4	01	0	UC	3	4	v	v
	застывания, °С	0-	c-	c-	٠-	0-	-10	04-	c-	01-	0-	07-	٠-	c-	<u>ر-</u>	ر- ا
5	5 Рабочая кон-															
	центрация ПО,															
	% для воды с	9	9	9	4	9	9	9	9	9	9	9	9	9	9	9
	жесткостью															
	мг-ύкв/л до 10															
															Таблица 1.4	la 1.4

Огнетушание свойства различных видов пенообразователей

5	neighballine chonei	различиру рид	OTHER MAINTENANCIBA PASSINATION BRADE INCHOODPASSED INTO		
Показатели	Протеиновый	Синтетический	Фторпротеиновый	Фторсинтетический пленкообразующий	Фторпротеиновый пленкообразующий
Скорость тушения	*	***	***	****	* * * *
Сопротивляемость к повторному возгоранию	**	*	***	**	**
Устойчивость к углеводородам	*	*	**	****	* * * *
****	***				

Обозначения: * — слабая, ** — средняя, *** — хорошая, **** — отличная.

Примечания: 1.Для тушения полярных жидкостей используется пенообразователи FC-602, и AFFF-AR. 2. В некоторых климатических зонах используются низкотемпературные пенообразователи с температурой замерзания (-20°С) ПО-6 МТ и с температурой (-30°С) ПО ТЭАС- НТ

3. Для получения пены из морской воды используется пенообразователь "МОРПЕН" ПО-6 НП.

Негорючая основа:

гидрокарбонат натрия
 карбонат натрия
 гидрофосфат аммония
 диаммония фосфат
 хлориды щелочных металлов
 Na₂CO₃;
 (NH₄)HPO₃;
 хлориды щелочных металлов

- пористый кремний.

Гидрофобизаторы:

- стеараты многовалентных металлов;
- силиконовые масла.

Депрессанты:

- тальк;
- нерфторированные углеводороды.

Основной состав отечественных порошков представлен в табл. 1.5. Таблица 1.5

Характеристика огнетушащих порошков

	impunite oriety mammin reporting					
№ Π/Π	Марки	Класс пожара	Основной компонент	Тушащая концентрация кг/м²		
1	ПСБ-3	B, C, E	Бикарбонат натрия	1,5÷2,0		
			NaHCO ₃	, , , , , , , , , , , , , , , , , , , ,		
2	ПФ	A, B, C, E	Диаммоний-фосфат	1,5÷2,0		
			(NH ₄) ₂ HPO ₄	, ,		
3	П-1А	A, B, C, E	Аммофос	2,5÷3,5		
			$NH_4H_2PO_4+(NH_4)_2SO_4$, ,		
4	СП-2	B, C, E	Силикагель и хладон	0,3		
			H ₄ B ₂ SiO ₂ и C ₂ F ₄ Br ₂			
5	ПС	D	Карбонат натрия	До 20		
			Na ₂ CO ₃			
6	ПХ	A, B, C, D, E	Хлорид калия KCl	0,9		
7	ПГС	A, B, C, D, E	Минерал силиквит	1,5		
			NaCl 57÷58%			
			KCl 20÷40%			
8	КС	B, C, E	Сульфат калия	1,4÷2,0		
			K ₂ SO ₄			
9	ПМ	B, C, E	NH2CONH2 и KHCO3	0,4		
10	Вексон	A, B, C, E	Фосфат аммония	_		
11	Феникс	A, B, C, E	Аммофос			

Состав отечественных порошков. Химический состав негорючей неорганической основы:

- неорганические соли (карбонат натрия Na_2CO_3);
- гидрокарбонат натрия NaHCO;
- дигидрофосфат аммония NH₄H₂PO₄;
- гидрофосфат аммония $(NH_4)_2H_2PO_4;$
- аммофос $(NH_4H_2PO_4+(NH_4)_2SO_4)$;
- хлориды щелочных металлов NaCI хлорид натрия (КСІ хлорид калия);

- гидрофобизаторы добавки, предотвращающие высокую гигроскопичность порошков (поглощение влаги):
 - аэросил (SiO₂) с добавками дихлордиметилсилана (CH₃)₂Cl₂Si;
- стеараты металлов Ca, Mg, Al: $(C_{17}H_{35}COO)_2Ca$ стеарат кальция; $(C_{17}H_{35}COO)_2Mg$ стеарат магния; $(C_{17}H_{35}COO)_3A1$ стеарат алюминия;
- триалкилфосфаты R_3PO_4 , где R углеводородный радикал (например, трибутилфосфат ($C_4H_9O)_3PO$);
 - депрессант;
- добавки, улучшающие текучесть порошков и предотвращающие их комкование и слеживаемость;
 - нефелиновый концентрат (Na, K) $_2$ O·Al $_2$ O $_3$ ·2SiO $_2$);
 - тальк (3Mg·O₄SiO₂·H₂O);
 - слюда KAl₂(AlSi₃O₁₀)(OH)₃;
 - графит (углерод).

Наиболее эффективным из всех известных является порошок "МОННЕКС", впервые продемонстрированный в Англии. Его отличительной особенностью является способность к самопроизвольному диспергированию крупных частиц порошка в зоне горения. В состав порошка входит сплав мочевины с бикарбонатом натрия. При попадании частицы в зону горения мочевина быстро разлагается с выделением аммиака и окиси углерода, которые приводят к взрывному разделению крупной частицы на мелкие, размером 10-20 мкм. Мелкие частицы быстро поглощают тепло в зоне горения и этим прекращают горение в газовой фазе.

Широкие исследования в области порошкового пожаротушения выявили целый ряд твердых веществ, способных в тонко измельченном состоянии (основная масса частиц размером менее 100 мкм) подавлять радикально-цепной процесс горения.

В последующем, исходя из огнетушащей эффективности, эксплуатационных характеристик и экономических факторов, в качестве основных компонентов в рецептуре огнетушащих порошков были выбраны три класса веществ: фосфорно-аммонийные соли, бикарбонаты и хлориды щелочных металлов (Na и K). Все это хорошо растворимые в воде соли с ярко выраженной ионной кристаллической структурой.

Огнетушащие порошки, основой которых является фосфорно-аммонийные соли применяются для тушения пожаров классов A, B, C, E; бикарбонатные порошки — для B, C, E и хлоридные порошковые составы — для B, C, E, Π .

Итак, с помощью огнетушащих порошков можно тушит пожары всех классов. В тоже время пока не известен универсальный порошковый состав, способный тушить пожары всех классов

Как уже отмечалось выше, высокой огнетушащей эффективностью обладают твердые химические соединения (соли) с ярко выраженной ионной кристаллической структурой. Чем выше дисперсность порошка, тем больше его поверхность на единицу массы и соответственно больше возможности по гетерогенной рекомбинации радикалов и атомарных частиц.

Исходя из этого, чем выше дисперсность порошка, тем выше должна быть его огнетушащая способность.

В реальности для огнетушащих порошков оптимальной считается дисперсность частиц 10-20 мкм, помимо этого в состав порошков должно входить порядка 50% частиц более 50 мкм (до 200 мкм).

Это обстоятельство связано с тем, что при пожарах развиваются мощные конвективные потоки и создание огнетушащей концентрации высокодисперсного порошка по всему объему пламени чрезвычайно затруднительны. Т.е. очень мелкие частицы порошка практически невозможно вбросить в конвективную колонку пламени.

Кроме того, косвенно на огнетушащую способность влияет насыпная плотность порошка и его текучесть. От этих факторов зависит скорость создания и время поддержания огнетушащей концентрации в объеме пламени. Для очень мелких порошков выше указанные показатели имеют невысокие значения и, соответственно, их огнетушащая способность существенно снижается.

Помимо огнетушащей способности очень важную роль играют эксплуатационные свойства огнетушащих порошков. К этим свойствам относятся такие показатели как насыпная плотность неуплотненных и уплотненных порошков, их влагосодержание способность в водооталкиванию, склонность к влагопоглощению и слеживанию, текучесть, пробивное напряжение, фракционный состав. От некоторых из этих показателей существенно зависит срок годности огнетушащих порошков.

Поскольку основой практически всех огнетушащих порошков являются хорошо растворимые в воде соли, которые даже при наличии в их составе относительно небольшого количества влаги или поглощении этой влаги из атмосферы, способны к перекристаллизации — растворение части кристаллов и образовании новых с объединением более мелких в более крупные. Этот процесс приводит к слеживанию огнетушащего порошка. Очевидно, что использовать слежавшийся порошок в качестве огнетушащего вещества невозможно.

В этой связи огнетушащие порошки помимо основного огнетушащего вещества (соли) содержат в своем составе добавки, улучшающие текучесть порошка, его способность к водоотталкиванию и снижающие склонность к влагопоглощению и слеживанию.

В качестве добавок улучшающих текучесть огнетушащих порошков обычно применяют алюмосиликаты.

Для повышения водоотталкивающих свойств порошков применяют модифицированный осажденный оксид кремния (аэросил или белая сажа).

Условия сохранения качества определяются хранением огнетушащих порошков в герметичных упаковке и технических средствах пожаротушения. Кроме этого, желательно хранить порошки в сухих, отапливаемых помещениях с небольшим перепадом температур. Это снижает возможность перекристаллизации основного компонента огнетушащего порошка. При разгерметизации упаковки с порошком необходимо быстро поместить

порошок в герметичную тару или техническое средство пожаротушения.

По степени воздействия на организм человека огнетушащие порошки относятся к 3-му классу опасности.

В организм человека порошок может попасть в виде пыли. Поэтому, при работе с огнетушащими порошками, необходимо применять индивидуальные средства защиты (противопылевые респираторы, защитные очки, перчатки, спецодежду и обувь). Необходимо также соблюдать правила личной гигиены. Помещения, в которых проводятся работы с огнетушащими порошками, должны быть оборудованы приточно-вытяжной вентиляцией.

В процессе длительного хранения некоторые огнетушащие порошки могут слеживаться. В этом случае требуется регенерация или утилизация последних.

Процесс регенерации заключается в сушке порошка, его измельчении, смешении с дополнительным количеством модифицированного оксида кремния и классификации (рассева) Проведение регенерации в условиях потребителя огнетушащих порошков экономически нецелесообразно. Большие партии некондиционных огнетушащих порошков следует отправлять на заводы-производители этих порошков. Небольшие количества порошка целесообразнее всего утилизировать; огнетушащие порошки на основе фосфорноаммнийных солей и хлорида калия — в качестве удобрений, а на основе бикарбоната натрия — технических моющих средств.

1.3. Огнетушащие средства разбавления

Огнетушащие средства разбавления понижают концентрацию реагирующих веществ ниже пределов, необходимых для гонения. В результате уменьшается скорость реакции горения, скорость выделения тепла, снижается температура горения. При тушении пожаров разбавляют воздух, участвующий в горении, или горючее вещество, поступающее в зону горения. Воздух разбавляют в относительно замкнутых помещениях (сушильных камерах, трюмах судов и т.п.), а также при горении отдельных установок или жидкостей на небольшой площади при свободном доступе воздуха.

Огнетушащая концентрация — это объемная доля огнетушащего вещества в воздухе, прекращающая горение. Наиболее распространены диоксид углерода, водяной пар, азот и тонкораспыленная вода.

Диоксид углерода в газообразном состоянии примерно в 1,5 раза тяжелее воздуха. При давлении примерно 40 МПа (40 атм) и температуре 0°С диоксид сжижается, в таком виде его хранят в баллонах, огнетушителях и т. п. При переходе в газообразное состояние из 1 кг жидкого диоксида углерода образуется примерно 500 л газа.

Диоксид углерода применяется для тушения пожаров на складах, аккумуляторных станциях, в сушильных печах, архивах, книгохранилищах, а также для тушения электрооборудования и электроустановок. Огнетушащая объемная доля диоксида углерода — 30% в защищаемом помещении. Эффект тушения обусловлен тем, что в обычных условиях диоксид углерода —

инертное соединение, не поддерживающее горения большинства веществ.

Азот применяется для тушения пожаров натрия, калия, бериллия и кальция, а также некоторых технологических аппаратов и установок.

Азот — бесцветный газ плотностью $1,25~{\rm кг/m^3}$, без запаха, вкуса, неэлектропроводен. Тушение азотом основано на понижении объемной доли кислорода в защищаемом помещении до 5%. Его огнетушащая объемная доля не менее 31%. Азот нельзя применять для тушения пожаров магния, алюминия, лития, циркония и других металлов, образующих нитриты, обладающих взрывчатыми свойствами и чувствительных к удару. Для тушения таких металлов используется другой инертный газ — аргон.

Водяной пар, как и инертные газы, применяют для тушения пожаров способом разбавления. Его огнетушащая объемная доля — 35%. Наряду с разбавляющим действием водяной пар оказывает охлаждающее действие и механически отрывает пламя.

Тушение пожаров водяным паром эффективно в достаточно герметизированных (с ограниченным числом проемов) помещениях объемом до 500 м³ (трюмах судов, сушильных и окрасочных камерах, насосных по перекачке нефтеперерабатывающих установок и т.п.).

Кроме тушения пожаров в стационарных установках водяной пар можно использовать для наружного пожаротушения установок химической и нефтеперерабатывающей промышленности. В этом случае его подают по резиновым шлангам от стояков паровых линий.

В тонкораспыленной (мелкодиспергированной) воде диаметр капель меньше 100 мк. Для получения и подачи такой воды применяют специальные стволы-распылители и насосы, создающие давление 2...4 МПа. (2040 атм).

Поступая в зону горения, тонкораспыленная вода почти вся превращается в пар, разбавляя горючие вещества или участвующий в горении воздух. Эффект тушения зависит от равномерности распределения капель в потоке и плотности струи; чем больше плотность струи и ее размерность, тем выше эффект тушения.

Газовые огнетушащие составы условно делятся на нейтральные (негорючие) газы — $H\Gamma$ и химически активные ингибиторы — XAИ.

K нейтральным газам относятся инертные газы аргон, гелий, а также азот и двуокись углерода. Применяются смеси CO_2 с инертными газами.

Нейтральные газы (НГ):

Газ	Ar	N_2	Н ₂ О (пар)	C0 ₃	Воздух
				-	_

К химически активным, называемым "хладонами" или "фреонами", относятся органические соединения с низкой теплотой испарения, в молекуле которых содержатся атомы галоидов, таких как бром или хлор.

Химически активные ингибиторы (ХАИ):

Газ	CC1 ₄ CH ₃ Bг	CH ₃ Br	C ₂ H ₅ Br	CF ₃ Br	C ₂ F ₄ Br ₂
-----	--	--------------------	----------------------------------	--------------------	---

К химически активным ингибиторам, называемым "хладонами" или "фреонами", относятся органические соединения с низкой теплотой испарения, в молекулах которых содержатся атомы галоидов, таких как бром или хлор.

Первым из группы "хладонов", практически примененным для тушения пожаров, был четыреххлористный углерод, который использовался для заполнения ручных огнетушителей.

Высокая токсичность этого вещества привела к отравлению людей, поэтому дальнейшее его использование было запрещено. Не менее токсичными оказались и хладон 1001 — метилбромид и хлор-бромметан — хладон 1011, которые также не нашли широкого применения.

В качестве хладонов с низкой токсичностью оказались соединения углерода с фтором и бромом в различных пропорциях.

Хладон — это общее название галогензамещенных углеводородов, причем для их обозначения применяют численное обозначение, характеризующее число и последовательность атомов углерода, фтора, хлора, брома, называемое хладоновым номером, например, CF_3 Вг обозначают числом 1301.

Огнетушащая способность хладона, как правило, тем выше, чем больше атомов брома, фтора и хлора в молекуле.

Наиболее широко применяется хладон 1301 — бромтрифторметан и бромхлордифторметан (хладон 1211), а также дибромтетрафторэтан (2402). Выше даны обозначения хладонов в соответствии с их торговым наименованием.

В связи с опасением, что хладоны воздействуют на озоновый слой земли, NFPA (Пожарная организация Америки) были рекомендованы к применению галоидоуглеводороды, представленные в табл. 1.6.

Для хладонов — средств тушения пожаров — принято иное обозначение этих веществ: цифрами, последовательно указывают число атомов углерода минус 1, далее число атомов водорода плюс 1, далее число атомов фтора.

Наличие в молекуле атомов брома отмечается дополнительно буквой "В" и далее их количество цифрой. О количестве атомов хлора следует догадываться из оставшихся свободных валентностей атомов углерода. Поэтому вышеперечисленные соединения могут быть представлены набором цифр: $CH_3Br - 4B1$; CHClBr - 2B1; $CF_3Br - 13B1$; $CF_2Br_2 - 12B2$; $C_2F_4Br_2 - 114B2$.

Составы БФ-1 и БФ-2 содержат 84% и 73% бромистого этила, 16% и 28% тетрафтордибромэтана, соответственно. Состав БМ состоит из 70% бромэтила и 30% бромистого метилена. Огнетушащие концентрации перечисленных составов находятся в пределах 4,6...4,8% об. Наиболее эффективными являются составы ТФ (100% тетрафтордибромэтан — хладон 114В2) и хладон 13В1. Флегматизирующая концентрация этих газов для гексано-воздушных смесей составляет 3,5 и 5,5% об.

Физико-химические свойства этих соединений и смесевых композиций представлены в табл. 1.7.

Таблица 1.6 Огнетушащие составы на базе галоидоуглеводородов, не влияющих на озоновый слой земли

Обозначения	Химический состав	Формула
FC-3-1-10	Перфторбутан, perfluorobutane	C ₄ F ₁₀
HBFC-22B1-HCFC Blend A	Бромдифторметан, Bromodifluoromethane Дихлортрифторэтан, Dichlorotrifluoroethane HCFC-123 (4,75%)	CHF ₂ Br CHCl ₂ CF ₃
	Хлордифторметан, Chlorodifluoromethane, HCFC-22 (82%)	CHClF ₂
NAF SIII	Хлортетрафторэтан, Clorotetrafluoroethane, HCFC-124 (9,5%)	CYC1FC3
	Изопропил 1-метилциклогексан, Isopropeny 1-1-methylcyclohexene (3,75%)	
HCFC-124	Хлортетрафторметан, Chlorotetrafluoroethane	CHCIFCF3
HFC-125	Пентафторэтан, Pentafluoroethane	CHF ₂ CF ₃
HFC227ea	Гептафторпропан, Heptafluoropropane	CF ₃ CHFCF ₃
HFC-23	Трифторметан, Trifluoromethane	CHF ₃
IG-541	Азот, Nitrogen (52%) Аргон, Argon (40%)	N ₂
	Двуокись углерода, Carbon dioxide (8%)	CO ₂

Таблица 1.7

Физические свойства газовых огнетушащих составов

Физические своиства газовы	Физические своиства газовых отнетущащих составов								
Обозначение	FC-3-1-10	HBFC-22B1	HCFC A	HCFC-124					
Молекулярная масса	238,03	130,92	92,90	136,5					
Точка кипения при 760 мм рт. ст.	-2,0	-15,5	-38,3	-11,0					
Точка замерзания	-128,2	-145	<-107,2	198,9					
Удельная теплоемкость жидкость 25°C	1,047	0,813	1,256	1,13					
Удельная теплоемкость, 1 бар и 25°C	0,804	0,455	0,67	0,741					
Теплота парообразования в точке кипения 25°C	96,3	172,0	225,6	194					
Теплопроизводность жидкости 25°C	0,0537	0,083	0,0900	0,0722					
Вязкость, жидкость 25°C	0,324	0,280	0,21	0,299					
Давление пара 25°C	289,6	431,3	948	386					
Точка кипения при 760 мм рт. ст.	-48,5	-16,4	-82,1	-196					
Точка замерзания	-102,8	-131	-155,2	-78,5					

Широкое применение хладонов в закрытых помещениях ограничено из-за их токсичности. Хладон 114В2 обладает наименьшей токсичностью, но из-за воздействия на озоновый слой земли его применение сильно ограничено. Эффективность огнетушащего действия хладонов максимальна

при их использовании в закрытых и ограниченных объемах.

Механизм огнетушащего действия химически активных ингибиторов определяется химической структурой их молекул, как правило, содержащих несколько разнородных атомов, в том числе атомы галогенов — брома, фтора, хлора, йода и один или два атома углерода, а также возможно наличие атомов водорода. Если за исходную химическую единицу взять метан или этан, то на их базе может существовать большой набор соединений, отличающихся низкой температурой кипения, невысокой теплотой парообразования и негорючестью.

В практике тушения пожаров используются CH_3Br , C_2H_5Br , CF_3Br и $C_2F_4Br_2$ и их смеси с CO_2 . Огнетушащие концентрации (объемные) ХАИ в 5...10 раз ниже, чем у нейтральных газов.

Это обусловлено, в первую очередь, высокой собственной мольной теплоемкостью и способностью их молекул разлагаться в пламени при невысоких температурах до 1000 К.

В результате часть тепла реакции горения будет расходоваться на разогрев молекул ингибитора, вторая часть поглотится в процессе распада ингибитора и лишь третья часть пойдет на разогрев собственно горючего и окислителя. При этом, за счет ингибирования реакции, часть горючего не будет участвовать в горении и этим снизится общее количество тепла, выделяющегося при горении.

Для химически активных ингибиторов необходимо учесть поглощение тепла, выделяющегося при горении.

2. ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРОВ ПОДАЧИ ОГНЕТУШАЩИХ ВЕЩЕСТВ

2.1. Приборы подачи воды

Основными приборами подачи огнетушащих веществ являются пожарные стволы, пеногенераторы, стационарные и передвижные пеносливные устройства. Эти приборы предназначены для формирования струи в зависимости от вида подаваемого огнетушащего вещества. Стволы подразделяются на водяные, порошковые и воздушно-пенные, а по пропускной способности и размерам — на ручные и лафетные.

При тушении пожаров и осуществлении защитных действий на технологических установках химической, нефтехимической и нефтеперерабатывающей промышленности, а также на некоторых других объектах применяют турбинные и щелевые распылители HPT-5, HPT-10, HPT-20, PB-12. Насадки-распылители HPT-5, HPT-10 и PB-12 устанавливают на ручные стволы вместо стандартного насадка, а на лафетный ствол ПЛС-20 П устанавливают HPT-20. В практических расчетах (если не указаны другие условия) напор у ручных стволов принимается равным 30 м, а у лафетных, пенных стволов, турбинных и щелевых насадков-распылителей — 60 м. Тактические возможности водяных стволов зависят от их технической характеристики, параметров работы, расхода и интенсивности подачи воды. Тактико-технические характеристики HPT и PB представлены в табл. 2.1, а гидравлические характеристики в табл. 2.2.

Для подачи и получения огнетушащей пены применяют воздушно-пенные стволы (СВП), генераторы пены средней кратности (ГПС), пеносмесители, стационарные и передвижные пеносливные устройства. Воздушно-пенные стволы подразделяются по конструкции на лафетные (ПЛСК-П20, ПЛСК-С20, ПЛСК-С6О) и ручные с эжектирующим (СВПЭ-2, СВПЭ-4, СВПЭ-8) и без эжектирующего (СВП, СВП-2, СВП-4, СВП-8) устройства. Получение и подачу в очаг пожара струи пены средней кратности осуществляют генераторами ГПС-200, ГПС-600 и ГПС-2000. возможны их модификации. Для введения в поток воды пенообразователей, с целью получения раствора необходимой концентрации, используют стационарные (установленные на насосах) и переносные пеносмесители. К стационарным относятся ПС-4, ПС-5, ПС-8, ДПС-12, ДПС-24; к переносным — ПС-1, ПС-2, ПС-3.

Дозатор пеносмесителя ПС-5 имеет пять радиальных отверстий диаметром 7,4; 11; 14,1; 18,2; 27,1 мм, рассчитанных на дозировку пенообразователя при работе одного, двух, трех, четырех и пяти генераторов ГПС-600 или стволов СВП. Шкала двухэжекторного пеносмесителя ДПС-24

Таблица 2.1 Тактико-технические характеристики насадков-распылителей турбинного и шелевого типов

Параметры	Турби	нные распь	ілители	Щелевой распылитель РВ-12
	HPT-5	HPT-10	HPT-20	
Напор перед распылителем,	0,6	0,6	0,6	0,6
МПа				·
Расход воды, л/с	5	10	20	12
Дальность струи, м	20	25	35	8 (вертикальная завеса)
Масса, кг	0.8	0,8	0,8	13
Высота водяных завес, м	10	12	15	8
Толщина водяных завес, м	1.2	1,5	2.0	1,2
Площадь, м2	50	100	200	100

Таблица 2.2

Гидравлические	характеристики	насадков
----------------	----------------	----------

		т идравли теся				
Напор				аметре насадка, г		
насадка	13	16	19	22	25	28
25	2,9	4,4	6,2	8,2	10,7	13,4
26	2,9	4,5	6,3	8,4	10,9	13,6
27	3,0	4,5	6,4	8,6	11,1	13,9
28	3,0	4,6	6,5	8,7	11,3	14,1
29	3,1	4,7	6,6	8,9	11,5	14,4
30	3,2	4,8	6,7	9,0	11,7	14,6
31	3,2	4,9	6,9	9,2	11,9	14,9
32	3,3	4,9	7,0	9,3	12,1	15,1
33	3,3	5,0	7,1	9,5	12,2	15,4
34	3,4	5,1	7,2	9,6	12,4	15,6
35	3,4	5,3	7,3	9,8	12,6	15,8
40	3,6	5,5	7,8	10,4	13,5	16,9
45	3,9	5,9	8,3	11,1	14,3	17,9
50	4,1	6,2	8,7	11,7	15,1	18,9
55	4,3	6,5	9,1	12,2	15,8	19,8
60	4,5	6,8	9,5	12,8	16,5	20,7
65	4,6	7,0	9,9	13,3	17,2	21,5
70	4,8	7,3	10,3	13,8	17,8	22,4
75	5,0	7,6	10,7	14,3	18,5	23,1
80	5,2	7,8	11,0	14,8	19,1	23,8
85	5,3	8,0	11,3	15,2	19,6	24,3
90	5,5	8,3	11,7	15,7	20,2	24,5

имеет деления 0, 4, 8, 12, 24, соответствующие подаче по пене (м³/мин) кратностью, равной 10. В зависимости от положения дозатора, вода и пенообразователь проходят через отверстия разных диаметров, которые соответствуют делениям шкалы 0,4, 8,12,24. При работе одним ГПС-600 или СВП стрелку на шкале устанавливают на деление 4, двумя ГПС-600 или СВП — на деление 8 и т. д.

Таблица 2.3 Тактико-технические показатели приборов подачи пены низкой и средней кратности

Ствол	Напор	Концентрация	Pac	код, л/с	Кратность	Подача	
и пеногенератор	у прибора,	раствора, %	воды	пенообразо-	пены	(расход) по пене,	
	М			вателя		м/мин	
ПЛСК-П20	60	6	18,8	1,2	10	12	
ПЛСК-С20	60	6	21,62	1,38	10	14	
ПЛСК-С60	60	6	47,0	3,0	10	30	
СВП	60	6	5,64	0,36	8	3	
СВП-2	60	6	3,76	0,24	8	2	
(СВПЭ-2)							
СВП-4	60	6	7,52	0,48	8	4	
(СВПЭ-4)							
СВП-8	60	6	15,04	0,90	8	8	
(СВПЭ-8)							
ГПС-200	60	6	1,88	0,12	100	12	
ГПС-600	60	6	5,64	0,36	100	36	
ГПС-2000	60	6	18,8	1,2	100	120	

Таблица 2.4 Тактико-технические показатели переносных пеносмесителей

	Напор перед		Расход	Uис	יחס חסחעחו	UNDEWLIA	приборов, шт.
Пеносмеситель		Концентрация раствора, %	раствора, л/с		СВП-4	СВП-8	СВП, ГПС -200
ПС-1	70-100	4-6	5-6	1	_	_	1
ПС-2	70-100	4-6	10-12	2	1	_	2
ПС-3	70-100	4-6	15-18	4	2	1	3
ПС-4	80	4	7,3	2	1	_	1
ПС-5	80	4	7-9	2	1	_	1

Таблица 2.5 Тактические возможности основных приборов подачи пены

Пенный прибор	Расход раствора из прибора,	Площадь тушения одним прибором, м², за расчетное время при интенсивности подачи раствора, л/(м²с)						
Приоор	л/с	0,05	0,08	0,1	0,12	0,15		
СВП	6	-	-	60	50	40		
СВП-2	4	_	_	40	33	26		
СВПЭ-2		-	-					
СВП-4	8	-	-	80	66	53		
СВПЭ-4		-	-					
СВП-8	16	-	-	160	133	107		
СВПЭ-8		-	-					
ГПС-200	2	40	25	_	-	_		
ГПС -600	6	120	75	_	-	_		
ГПС -2000	20	400	250	_	=	-		

Пеносмеситель ДПС-12 (ранней конструкции) отличается от ДПС-24 рабочей характеристикой. У ДПС-12 на шкале имеются деления 0, 4,

8, 12, которые так же, как и у ДПС-24 соответствуют подаче пены (${\rm M}^3/{\rm Muh}$) кратностью 10.

При одновременной подаче для тушения пожара большого количества ГПС-600, СВП или нескольких ГПС-2000, пенообразователь нагнетается в напорные линии через переносной дозатор специальной конструкции, к которому подключают автомобиль пенного тушения или любой другой, имеющий в своей емкости необходимое количество пенообразователя. Тактико-технические показатели приборов подачи пены низкой и средней кратности приведены в табл. 2.3 и 2.4, а тактические возможности их — в табл. 2.5.

2.2. Пожарные напорные рукава

В зависимости от назначения и условий работы рукава разделяются на группы: всасывающие, напорно-всасывающие и напорные.

Всасывающие и напорно-всасывающие рукава предназначены для отбора воды из водоисточника с помощью пожарного насоса.

Всасывающие рукава служат для забора воды из открытых водоисточников, а напорно-всасывающие — из водопроводной сети.

Напорные рукава служат для подачи воды под давлением к месту пожара.

Напорные рукава бывают следующих типов:

- прорезиненные,
- латексированные,
- с двухсторонним полимерным покрытием,
- пластмассовые армированные,
- льняные,
- рукава для рабочего давления 3,0 МПа.

Основные технические характеристики всасывающих пожарных рукавов приведены в табл. 2.6.

Таблица 2.6 Техническая характеристика всасывающих рукавов

Внутренний	Длина	Рабочее давление,	Рабочий вакуум,	Масса 1 м р	укава, кг
диаметр, мм	рукава, м	МПа	МПа	В	КЩ
20	2,0			0,8	1,1
25	3,0			1,0	1,3
32	4,0			0,2	1,5
65	6,0	0.5	0,08	2,3	2,8
75	9,0	0,5		3,1	3,9
125	10,0			6,3	7,3
150	2,0-6,0			8,0	9,0
200	2,0-6,0			11,5	12,5

Техническая характеристика напорных рукавов, в т.ч. вывозимых на пожарных автомобилях, приведены в табл. 2.7 и 2.8.

Таблица 2.7 Техническая характеристика напорных рукавов, вывозимых на пожарных автомобилях

		Про	резинен	ные		Латекси-	С двух-	Рукава с	Льноджуто-
Показатели						рованные	сторонним покрытием	Р _{раб} = 3 МПа	вые уси- ленные
Внутренний диа-	51	66	77	89	90	51;	51;	38;	51;
метр, мм	0.1			0,5	, ,	66;	66	51;	66;
17						77		66	77
Рабочее давле-	1,6	1,6	1,6	1,4	1,2	1,6	1,6	3,0	1,5
ние, МПа									
Испытательное	2,0	2,0	2,0	1,6	1,4	2,0	2,0	3,75	2,0÷1,8
давление, МПа									
Масса рукава	0,58	0,7	0,85	1,06	1,8	0,34;	0,45;	0,35;	0,33;
длиной 1 м, кг						0,44;	0,6	0,45;	0,41;
						0,54		0,6	0,5
Длина рукава в	20	20	20	20	20	20	20	20	20
скатке, м									

Таблица 2.8

Пожарные напорные рукава

Внутренний	Давление д рукавов		Емкость	Емкость рукава длиной 20		Пропускная способность	Вес одного
диаметр рукава, мм	рабочее	испыта- тельное	длиной 20 м, л	прорези- ненного	непроре- зиненно- го	прорезиненного рукава по воде, л/с	рукава длиной 20 м, кг
51	1,6	2,0	40	0,13	0,24	10,2	11,6
66	1,6	2,0	70	0,034	0,077	17,1	14,4
77	1,6	2,0	90	0,015	0,030	23,3	17,0
89	1,4	1,8	125	0,0035	_	30,0	21,2
110	1,4	1,6	190	0,0020	_	_	23,0
150	1,2	1,4	350	0,00046	-	_	36,0

2.3. Передвижные и переносные огнетушители

Порошковые огнетушители используются в качестве первичного средства тушения загорания пожаров класса А (твердых веществ), В (жидких веществ), С (газообразных веществ) и электроустановок, находящихся под напряжением до 1000 В. Огнетушители не предназначены для тушения загораний щелочных и щелочноземельных металлов и других материалов, горение которых может происходить без доступа воздуха.

Сводные технические характеристики основных переносных и передвижных порошковых огнетушителей приведены в табл. 2.9.

В серии воздушно-пенных передвижных огнетушителей наибольшее применение получил огнетушитель ОВП-100.01 (ТУ 22-141-02-87). Он предназначен для тушения очагов пожаров классов А (горение твердых веществ) и В (горение жидкостей). Огнетушитель не может быть применен для тушения веществ, горение которых происходит без доступа воздуха (хлопок, пироксилин и т.п.), щелочных металлов и электроустановок, находящихся под напряжением.

Таблица 2.9 Сводные технические характеристики основных переносных и передвижных порошковых огнетушителей

	1							_
		Огнетуша-	Рабочее	Время	Дли-	Габарит-		Вмести-
Марка	Кол-во	щая	давле-	подчи	на	ные	Macca,	мость
огнетуши-	ОТВ,	способно-	ние*, МПа	OTB, c,	выб-	размеры,	кг	баллона
теля	КГ	СТЬ	(кгс/см ²)	не	poca,	HxLxB,		для газа,
				менее	М	MM		Л
				реносны				
ОП-1(б)	0,85	1A, 13 B	1,2 (12)	5	3	137x100	2,2	0,06
OII-1(3)	1,0	1A, 13 B	1,6 (16)	6	3	316x135	2,2	_
ОП-2(3)	2,0	1A, 21B	1,6 (16)	6	3	325x150	3,7	_
ОП-3(3)	3,0	2A, 34 B	1,6 (16)	8	3	428x150	5,2	_
ОП-5(3)	5,0	2A, 55 B	1,6 (16)	10	3,5	450x320	8,2	_
ОП-5(б)	5,0	2A, 55 B	1,2 (12)	10	3,5	450x320	9	0,175
ОП-10(з)	10,0	4A, 144B	1,6 (16)	13	4,5	628x350	16	_
ОП-10(б)	10,0	4A, 144B	1,2 (12)	13	4,5	628x350	16	0,350
			Пер	едвижнь	ie –			
ОП-50(б)	42,5	10A, 233B	1,2 (12)	25	6	1020x460x	100	1,5
						480		
ОП-50(з)	42,5	10A, 233B	1,2 (12)	20	6	1020x460x	85	_
						480		
ОП-100(з)	85,0	15A, 233B-	1,2 (12)	45	6	1300x700x	200	
		3				1000		
ОП-100(б)	90,2	15A, 233B-	1,5 (15)	45	15	1170x630x	167	3
` '		3				800		
	•	Ст	азогенериј	ующим	элемен	том		
ОΠ-6(г)	5,0	2A, 55B	1,17±0,1	6	3,0	480x150	9	_
()	ĺ	ĺ	2					
ОП-10(г)	8,0	4A, 144B	$(11,7\pm1)$	10	4,5	730x150	13	_
- ()	.,.	,	1,17±0,1		,-			
			2					
			$(11,7\pm1)$					
			Закачны	е специа	льные			
ОПА-2(3)	2,0	2A, 21B	1,6 (16)	5	1-1,5	200x120	4	
ОПА-3(3)	3	2A, 34B	1,6 (16)	5	1-1,5	350x150	5,5	_
ОПА-4(3)	4	2A, 55B	1,6 (16)	5	1-1,5	428x180	8	
ОПА-6(3)	6	3A, 89B	1,6 (16)	5	1-1.5	650x180	12	_
		,		рсальнь	,-			
ОПУ-5	4	2A, 55B	0,8 (8)	6	3	420x150	8,8	_
ОПУ-10	9	4A, 144B	0,8 (8)	9	3	420x210	15	_
2220 20		,	0,0 (0)					

^{*} Рабочее давление приведено для температуры (20+5)°С.

Основные технические данные огнетушителя ОВП-100 приведены в таблице 2.10.

Огнетушители СО₂ **(углекислотные)** предназначены для тушения загораний различных веществ, горение которых не может происходить без доступа воздуха, загораний на электрифицированном железнодорожном и городском транспорте, электроустановок, находящихся под напряжением до $1000\,$ B, загораний в музеях, картинных галереях и архивах.

^{**} Универсальные огнетушители могут поступать или с газогенерирующим устройством, или с баллоном для сжатого газа: (з) — закачные; (б) — балонные.

Передвижные огнетушители ОВП-100.01

Trepedbramble of herymatesia Obit-100.01	
Наименование показателей	Значения
Огнетушащая способность при тушении бензина A-76 ГОСТ 2084 пенообразователем ПО-1, м², не менее	6,5
Вместимость корпуса, л	100±5
Вместимость баллона с рабочим газом, л	2±0,1
Масса огнетушащего вещества, пенообразователя, кг:	
ПО-1 ГОСТ 6948; ПО-1Д ТУ 38-10793; ПО-6К ТУ 38-10740	5,5±0,5
ПО-3А ТУ 38-10923	2,8±0,4
вода, л	85±2
Рабочее давление в сосуде, МПа (кгс/см2), не более	0,8 (8)
Рабочий газ	CO_2
Масса СО2 в баллоне, кг	1,4±0,1
Длина шланга, м, не менее	5±0,3
Продолжительность подачи огнетушащего вещества, с, не более	4565
Продолжительность приведения огнетушителя в действие, с	10
Длина струи огнетушащего вещества, эффективная, м, не менее	6,5
Количество обслуживающего персонала, чел.	1
Масса огнетушителя, полная, кг, не более	148
Габаритные размеры, мм, не более:	
высота	1170
ширина	630
длина	630
Температурный режим эксплуатации, °С	от 5 до 50
Кратность пены, не менее	70

Сводные технические характеристики основных переносных и передвижных ${\rm CO_2}$ -огнетушителей приведены в табл. 2.11.

Таблица 2.11

							гаолица 2.11
Марка	Вмести-	Macca	Максимальное	Время	Класс пожара	Macca	Диапазон
огнету-	мость,	заряда,	рабочее	выхода	и размер	огнетушителя	температур
шителя	л	заряда, КГ	давление,	ОТВ, с, не	модельного	с зарядом, кг,	эксплуатации,
CO ₂			МПа (кгс/см²)	менее	очага	не более	°C
]	Переносные	2		
ОУ-1,5	1,5	1,05	15 (150)	8	10B	4,5	-40 +50
ОУ-2	2	1,4	15 (150)	8	10B	6,5	-40 + 50
ОУ-3	3	2,1	15 (150)	8	13B	6,8	-40 + 50
ОУ-5	5	3.5	15 (150)	9	34B	14	-40 + 50
ОУ-6	6	4,2	15 (150)	10	34B	14,5	-40 + 50
ОУ-8	8	5,6	15 (150)	12	55B	15,8	-40 +50
Передвижные							
ОУ-10	10	7	15 (150)	15	55B	30	-40 +50
ОУ-20	20	14	15 (150)	15	55B	50	-40 + 50
ОУ-25	25	17,5	15 (150)	15	55B	75	-40 + 50
ОУ-30	30	21	15 (150)	15	89 B	85	-40 + 50
ОУ-40	40	28	15 (150)	15	89 B	110	-40 + 50
ОУ-80	2-40	56	15 (150)	15	144B	239	-40 +50

В табл. 2.12 приведены основные технические характеристики огнетушителей и модулей пожаротушения, выпускаемых фирмой "Эпотос". Все огнетушители должны перезаряжаться после применения, если

Таблица основных технических характеристик огнетушителей и модулей пожаротушения, выпускаемых фирмой "Эпотос"

Наименование	Габаритные размеры (мм)	з размеры і)	Bec	Темпера плуа	Гемпература экс- плуатации	Температура срабатыва-	Защищаемая площадь	Защищаемый объем	Тип запуска	Примечания
изделия	длина	диаметр	(KT)	OT	до	, ния (°С)	(M^2)	(M ³)	,	
			Огн	етушител	ъ самоср	абатываюц	Огнетушитель самосрабатывающий порошковый (ОСП	вый (ОСП)		
ОСП-1(2)	200	54	1,2	-50	+50	ОСП-1 ОСП-2	I	2-8	Самосраба- тывание	
			Mo,	дули пор	ошковог	о пожароту	Модули порошкового пожаротушения "Буран" (МПП	ин" (МПП)		
МПП(р)-2,5	170	250	2,9	-50	+50	82+-5	7	18	Самосрабаты- вание, прину- дительный	
МПП(р)-2,5 взрывозащи- щенный	170	250	3,6	-50	+20	ı	A-B-7	A-18 B-16	Принудите- льный	Уровень и вид взрывозащиты 2ExtSiiBT3X; IP54
МПП(р)-0,5	210	100	1,6	-50	+50	I	A-B-2	A-B-2	ож оД	
МПП(р)-8 СВ средневысот-	350	250	12	-50	+50	ı	A-32 B-21	A-64 B-42	*	
МПП(р)-8 В высотный	350	250	13	-50	+50	I	A-24 B-16	A-46 B-32	»	
МПП(р)-8 Н настенный	350	250	12	-50	+50	I	A-32 B-20	A-64 B-31	»	
				Генерат	ор огнет	ушащего аэ	Генератор огнетушащего аэрозоля "Допинг 2"	инг 2"		
Допинг 2	160	75	1,3	-50	+62	200	I	2	То же	Допускается кратковременное (до 8 часов) по-
										вышение темпе-
										ратуры в защи-
										до 120°С

величина утечки газового огнетушащего вещества или вытесняющего газа за год превышает допустимое значение, но не реже сроков, указанных в $\Pi\Pi E$.

Сроки проверки параметров и перезарядки огнетушителей приведены в табл. 2.13.

Таблица 2.12 Слоки проверки параметров и перезарялки огнетущителей

Cpokii iipobepkii iiupumerpob ii iiepesupiigam oriiergiimiremen							
Вид используемого OTB	Срок (не реже)						
вид используемого отв	проверки параметров ОТВ	перезарядки огнетушителя					
Вода (вода с добавками)	Раз в год	Раз в год					
Пена *	Раз в год	Раз в год					
Порошок	Раз в год (выборочно) Раз в 5 лет						
Углекислота (диоксид	Взвешиванием раз в год	Раз в 5 лет					
углерода)							
Хладон	Взвешиванием раз в год	Раз в 5 лет					

^{*}Огнетушители с многокомпонентным стабилизированным зарядом на основе углеводородного пенообразователя должны перезаряжаться не реже одного раза в 2 года.

3. ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ОСНОВНЫХ ПОЖАРНЫХ АВТОМОБИЛЕЙ

Основные пожарные автомобили (ПА), автомобили тушения — пожарные автомобили, предназначенные для доставки личного состава к месту вызова, ликвидации горения и проведения спасательных работ с помощью вывозимых на них огнетушащих веществ и пожарного оборудования, а также для подачи к месту пожара огнетушащих веществ от других источников, которые классифицируются в зависимости от типа вывозимых огнетушащих веществ и способа их подачи.

АЦ — пожарная автоцистерна. Предназначена для тушения пожаров в населенных пунктах и промышленных предприятиях, в сельской местности и других объектах.

АЦЛ — пожарная автоцистерна с лестницей Предназначена для тушения пожаров в населенных пунктах, проведения аварийно-спасательных работ на высоте, подаче огнетушащих веществ на высоту и может использоваться в качестве грузоподъемного крана при сложенном комплекте колен.

АЦКП — автоцистерна с коленчатым подъемником Предназначена для тушения пожаров в населенных пунктах, проведения аварийно-спасательных работ на высоте, подаче огнетушащих веществ на высоту и может использоваться в качестве грузоподъемного крана при сложенном комплекте колен.

 $A\Pi$ — пожарный автомобиль порошкового тушения Предназначен для тушения пожаров на предприятиях химической, нефтяной, газовой и нефтегазоперерабатывающей промышленности, электрических подстанциях и аэропортах.

 $\Lambda\Pi T$ — пожарный автомобиль пенного тушения Предназначен для тушения пожаров на предприятиях нефтехимической промышленности и складах нефтепродуктов.

АКТ — пожарный автомобиль комбинированного тушения Предназначен для тушения комбинированным способом на промышленных предприятиях пожаров, объектах химической, нефтехимической и газовой промышленности, авиационных и других транспортных предприятиях, а также в населенных пунктах.

 $A\Gamma T$ — пожарный автомобиль газового тушения Предназначен для тушения пожаров электрооборудования, находящегося под напряжением, ценностей в музеях, архивах, очагов пожара в труднодоступных местах, например, подпольных пространствах.

АГВТ — пожарный автомобиль газоводяного тушения. Предназначен для тушения нефтяных и газовых фонтанов, а также пожаров на техноло-

гических установках нефтеперерабатывающих и химических предприятий, охлаждение объектов газоводяной струей.

АПП — пожарный автомобиль первой помощи. Предназначен для тушения загораний в жилых и административных зданиях, на автомобильном транспорте и проведения аварийно-спасательных работ, а также для ведения разведки при тушении развивающихся пожаров.

АНР — пожарный автомобиль насосно-рукавный. Предназначен для прокладки на ходу напорных магистральных рукавных линий, уборки их по окончании тушения пожаров, обеспечения подачи воды или воздушномеханической пены.

АВД — автомобиль с насосом высокого давления. Предназначен для тушения пожаров в высотных зданиях и сооружениях.

ПНС — пожарная автонасосная станция. Предназначена для подачи воды по магистральным пожарным рукавам непосредственно к переносным лафетным стволам или к пожарным автомобилям с последующей подачей воды на пожар и для создания резервного запаса воды вблизи от места крупного пожара.

ППП — пожарный пеноподъемник. Предназначен для тушения резервуаров и других технологических установок на объектах хранения и переработки нефти и нефтепродуктов.

В обозначениях ПА величину основного параметра показывают в следующих единицах измерений:

- вместимость цистерны для воды м³;
- вместимость бака для пенообразователя м³;
- масса вывозимого порошка кг;
- масса огнетушащего газа кг;
- подача насоса при номинальном числе оборотов л/с.

Напор ступеней насоса при номинальном числе оборотов:

- нормального давления м вод. столба;
- высокого давления м вод. столба;
- расход лафетного порошкового ствола кг/с;
- длина рукавной линии, км;
- число (количество) мест для боевого расчета (включая место водителя) кол.

Пример: АЦ 3.0 40/4 (4325) мод. 003-ПС ТУ.

Автоцистерна пожарная вместимостью 3 м³, комбинированным насосом с подачей 40 (ступень нормального давления) и 4 (ступень высокого давления) л/с, на шасси Урал-4325, модели 003, изготовленная на АООТ "Посевнинский машиностроительный завод" по ТУ.

Рекомендуемые области применения машин отмечаются буквами:

 Γ — в городах и населенных пунктах;

С — в сельской местности:

Х — в химической и нефтехимической промышленности;

 Π — первой помощи;

T — на автомобильном транспорте;

Ч — при чрезвычайных ситуациях;

 Π — на объектах лесопереработки (лесные и торфяные пожары);

Э — на объектах энергетики.

Подразделения, вооруженные автоцистернами (табл. 3.1, 3.2), способны подавать воду и воздушно-механическую пену различной кратности без установки и с установкой автомобилей на водоисточники, могут осуществлять подвоз воды с удаленных водоисточников, забирать ее из водоисточников с плохими подъездными путями с помощью гидроэлеваторов, производить перекачку воды с удаленных источников во взаимодействии с другими подразделениями на основных пожарных автомобилях.

Технические характеристики современных средних пожарных автоцистерн приведены в табл. 3.3.

Технические характеристики современных тяжелых пожарных автоцистерн приведены в табл. 3.4.

Технические характеристики пожарных автоцистерн, предполагаеых к выпуску, приведены в табл. 3.5.

Пожарные автонасосы (АН) и насосно-рукавные автомобили (АНР) предназначены для ликвидации горения воздушно-механической пеной, доставки к месту пожара боевого расчета, пожарно-технического вооружения и оборудования, а также запаса пенообразователя. У автонасосов, в отличии от автоцистерн отсутствует бак для воды, но не высокие ходовые качества, большая емкость бака для воды, возможность прокладки на ходу одной или двух магистральных линий, наличие спасательных устройств позволяют успешно использовать их для тушения пожаров и проведения аварийно-спасательных работ.

Подразделения, вооруженные автонасосами и насосно-рукавными автомобилями, способны осуществлять подачу воды на пожаре и воздушномеханической пеной различной кратности с установкой машин на водоисточники, а во взаимодействии с другими подразделениями на основных пожарных машинах могут быть использованы для подачи воды перекачкой от удаленных водоисточноков.

Основные тактико-технические характеристики АН и АНР приведены в табл. 3.6, 3.7.

Пожарные насосные станции предназначены для подачи воды на большие расстояния по магистральным линиям диаметром 150 мм. Насосные станции питают водой пожарные автоцистерны и автонасосы, пожарные стволы, мониторы как для подачи воды, так и пены. Одна насосная станция одновременно может питать водой 4 пожарных автомобиля с насосными установками производительностью 30...40 л/с на расстоянии 4...5 км (в зависимости от рельефа местности). Насосные станции используют для заполнения искусственных водоемов при подготовке к тушению пожаров. Совместно с рукавными автомобилями и передвижными лафетными стволами ПНС обеспечивают успешное тушение крупных пожаров на лесобиржах, а также нефтяных и газовых фонтанов.

Высокая скорость движения, небольшой расход топлива, возмож-

Таблица 3.1

АЦ-40 (ЭД МУ1Л (модель ПМ 14928 10,5 4000 102A) 2400 4,7 9,4 14,1 18,1 23,5 46 170 001 180 35 S АЦ-40 (375) (модель 94) 14200 2400 4000 10,5 4,7 9,4 14,1 18,1 23,5 170 00 180 55 35 80 АЦ-40 (133Г1) (модель 181) 25+125 Тактико-техническая характеристика эксплуатируемых пожарных автоцистерн 14970 11,0 36,0 2400 5000 180+ 180 4,7 9,4 14,1 18,1 23,5 100 80 35 9 АЦ-40 (131) модель 153) 11500 2400 2300 10,2 40,0 4,7 9,4 14,1 18,1 23,5 170 001 35 80 99 _ АЦ-40 (131) (модель 137) 11050 2400 40.0 2400 10,2 170 00 150 4,7 9,4 14,1 18,1 23,5 80 30 _ (модель 63Б) 2350 0096 2400 44,0 165 4,7 9,4 14,1 18,1 23,5 150 100 35 90 _ АЦ-40 (130) (модель 63A) 9100 44,0 2400 2100 4,7 9,4 14,1 18,1 23,5 8 150 150 30 90 _ АЦ-40 (130E) (модель 126) 9525 2400 2150 44,0 170 100 150 35 4 ∞ 万 _ АЦС-40 (131) (модель 42Б) 11160 2400 2400 10,2 150 100 150 4,7 9,4 14,1 18,1 23,5 4 30 80 Емкость бака для горючего, Бака для пенообразователя Масса с полной нагрузкой, Расход горючего на 100 км, засчета, включая водителя Наименьший радиус пово-Время всасывания воды с Подача воды при высоте Максимальная скорость, Производительность пе-Число мест для боевого носмесителя, м3/мин Цистерны для воды Показатели всасывания 3,5 м высоты 7 м, с Емкость, л Напор, м рота, м

Таблица 3.2 Технические характеристики современных легких пожарных автоцистерн

Характеристика	Попиопо	иводные	Непопион	риводные
ларактеристика	АЦО.8-4	АЦ1.5-30/2	АЦ1.5 5-40/4	АЦ2-4
	(5301 ФБ)	(5301)	(5301)	(5301)
Шасси	ЗИЛ-5301ФБ	ЗИЛ-5301ФБ	ЗИЛ-5301ФБ	ЗИЛ-5301ФБ
	(4-4)	(4-2)	(4-2)	(4-2)
Мощность двигателя, л. с.	105	105	105	108
Максимальная	65	90	90	90
скорость км/ч				
Запас огнетушащих вещес-				
тв, л:				
воды	800	1500	1500	2000
пенообразователя	50	90	125	200
Число мест для боевого	7	7	7	3
расчета, чел.				
Hacoc	НЦПН 4/400	НЦПК	НЦПК	НЦПН 4/400
	·	40/100-4/400	40/100-4/400	
Напор, м вод.ст.	100 (400)	100 (400)	100(400)	100 (400)
Подача, л/с	40 (4)	30 (2)	40 (4)	40 (4)
Высота всасывания, м	7,5	7,5	7,5	7,5
Габаритные размеры, мм,				
не более:				
длина	7100	6195	6140	7100
ширина	2500	2265	2265	2500
высота	3100	2885	2885	3100
Полная масса, кг	8620	7770	7040	8600

ность преодоления труднопроходимых участков позволяют успешно эксплуатировать насосные станции ПНС-100 и ПНС-110 в районах с температурой воздуха от -35 до $+35^{\circ}$ С.

Подразделения вооруженные насосными станциями, работают на пожарах во взаимодействии с подразделениями на основных и специальных пожарных машинах. Основные тактико-технические характеристики представлены в табл. 3.8, 3.9.

Пожарный автомобиль пенного тушения служит для доставки к месту пожара боевого расчета, пожарно-технического вооружения, пенообразователя и технических средств для подачи воздушно-механической пены. Системы водопенных коммуникаций этих автомобилей позволяют проводить:

- забор воды с открытого водоисточника или с гидранта при подпоре 30 м и подачу ее к стационарному лафетному стволу на кабине водителя или в напорные линии;
 - забор воды из водоисточника для заполнения цистерны;
- забор воды из цистерны машины и подачу ее на стационарный лафетный ствол или напорные линии;
- забор пенообразователя из пенобака, дозирование его, и подачу во всасывающую полость насоса, а раствора пенообразователя в воде в напорные линии или стационарный лафетный ствол, установленный на кабине водителя;

Таблица 3.3

Технические характеристики современных средних пожарных автоцистерн

					97	Townson of	- About	d mount of	Name and the same	Непопроприволите	GINDOGNIC		
`			2	HOUNDING TO THE	1						CIGHTECHING		
Характеристика	AU-40	, 540	АЦ-40	AU AGA	¥,	AU-40	AU-40,	AL 5	АВД	₹	ALL V	AL P	₽Ş
	1-4T	(131H)	(131H)	(4325)	(4326)	(+3202) 001-ПС	(43101) 001-MP	(433)	(4331-04)	(4331-04)	(433-04)	(4331-04)	(4331-04)
Шасси	ЗИЛ-	3ИЛ-	3ИЛ-	Урал-	КамА3	Урал-	КамА3	KamA3	3ИЛ-	3ИЛ-	КамАЗ;	ЗИЛ-	3ИЛ-
	131	131	131	4325	-4326	43202	-43101	-4333	433104	433104	-492	433104	433104
	(6*6)	(9*9)	(9*9)	(4*4)	(4*4)	(6*6)	(9*9)	(4*2)	(4*2)	(4*2)	(4*2)	(4*2)	(4*2)
Мощность двига-	150	150	150	180	210	210	210	210	210	185	210	185	185
теля, л. с.													
Максимальная	06	08	08	06	80	80	85	80	06	95	08	95	95
скорость, км/ч													
Запас огнетуша-													
щих веществ, л:													
воды	248	2550	3000	3000	3000	4000	4000	2500	3000	3000	3000	3000	4000
ПО	165	170	180	200	300	200	250	300	180	200	300	200	400
Число мест для	7	7	3	9	7	9	7	7	7	7	3	7	7
6/р., чел.													
Hacoc	-HII	ПН-40	-НШ	и Ш	нишн	ПН-40	ШН-40	IIH-	HIUTB	нцтк	-нтџтн	IIH-40	ΉΉ
	40Y		40yB	40/100-4/400	40			40yB	20/200	40/100-4/400	40		40VB
Напор, м	100	100	100	100/400	100	100+-5	100+-5	100	200	100/400	100	100	100
Подача, л/с	40	40	40	40/4	40	40	40	40	20	40/4	40	40	40
Высота всасыва-	7,5	7,5	2,7	2,7	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5
ния, м													
Габаритные раз-													
меры, мм													
не более:													
длина	7640	7640	7640	8000	7900	7615	7770	0069	7800	7800	7700	7800	7800
ширина	2500	2500	2500	2600	2500	2500	2510	2500	2500	2500	2500	2500	2500
высота	2950	2970	3000	3200	3200	2645	3360	3100	3000	3000	3000	3000	3000
Полная масса, кг	11100	11100	11100	13200	1160	1485	1500	11100	12000	11780	15200	11780	11780

Таблица 3.4

Технические характеристики современных тяжелых пожарных автоцистерн

	Полнополительные полнополительные полнополительные	darunday		Полноприводные	водные				Неполноприводные	иводные
Характеристика	AЦ-5 40 (4925)	АЦ5.0-40 (4310)	AЦ6.0-40 (5557)	АЦП6/6-40 (5557-10)	АЦ8.0-40 (5557)	АЦП8/6-40 (55571-30)	АЦ8.0-40/4 (4320)	АЦП9/3-40 (55571-30)	⋖	AЦ7.0-40 (53213)
Шасси	КамАЗ-	КамА3-	Урал-	Урал-	Урал-	Урал-	Урал-	Урал-	КамА3-	KamA3-
	4925	4310	5557	5557-	5557-	5557	$4\bar{3}20$	55571-30	53211	53213
	(4*4)	(9*9)	(9*9)	1152-	1152-10	(9*9)	(9*9)	(9*9)	(6*4)	(6*4)
				10(6*6)	(9*9)					
Мощность двигателя, л. с.	210	210	240	180	240	240	240	240	097	210
Максимальная скорость, км/ч	08	08	08	22	08	08	08	08	06	08
Запас огнетушащих веществ,										
JI:										
воды	2000	2000	5800)	0009	8000	8000	8000	0006	0009	7000
пенообразователя	500	500	360	300	300	300	300	300	360	200
Число мест для боевого расчета, чел.	7	<i>L</i>	9	9	3	9	L	3	<i>L</i>	7
Насос	нцпн- 40	ПН-40	ПН- 40УВ	ПН- 40УВ	ПН-40	ПН- 40УВ	НЦПК 40/100-	ПН- 40УВ	0 EHN	ПН-40
							4/400			
Напор,м	100	100	100	100	100	001	100(400)	100	100	100
Подача, л/с	40	40	04	40	40	40	40 (4)	40	40	40
Высота всасывания	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5	7,5

Таблица 3.5

Расход из лафетного ствола, л/с 20 20 20/40 20/40 20 40 Световые мачты, м 4 4 4 9 генератора, Квт Мощность Технические характеристики пожарных автоцистерн, предполагаемых к выпуску 4 4 4 4 Подача насоса, л/с ВД 7 4 4 4 2 무 30 40 30 9 4 9 8 9 8 Wu, м³ Wn, м³ 0,19 0,05 0,12 0,15 0,15 0,15 0,15 0,19 0,05 0,1 3,15 3,15 8,0 8.0 9,1 2,0 2,5 2,5 2,5 2,5 число мест для боевого расчета 9 α α 9 9 9 9 3 9 Мощность двигателя, л.с. 8,801 8,801 150 170 210 210 140 150 170 50 150 150 170 081 180 081 Полная масса, 11400 12000 10000 10500 10600 10600 11300 3000 11300 6300 9700 0099 7250 8000 9700 9700 1300 노 Привод Ξ Ξ Η \Box = \Box \Box \Box \Box Ξ \Box \Box Ξ \Box Ξ Η Ξ Область применения $\Gamma, X, \Psi, \vartheta,$ J. Γ, X, Ч, Э, г, х. ч, э, Γ, X, Ч, Э, г, X, Ч, Э, Γ, X, Ч, Э, F, X, 4, 9, С, Л, Ч Γ, X, Ч, Γ, Ж Γ, X Γ, Χ Г.Ч 3MJ 131 H 3ИЛ 131Н Урал 4320 Урал 4325 3UJI 131H Урал 4325 MA3 5337 3MJ 5301-FA3 3308 ЗИЛ 4334 3ИЛ 4334 Урал 4320 ЗИЛ 4362 3*I*III 4327 ЗИЛ 4331 3HJI 4331 Тип шасси ГА ЗИЛ 5301 CC КамА3 4326 АЦ 3,0-40/4 АЦ 0,8-30/2 АЦ 2,0-40/4 ALI(C)2,5-40 AII 4,0-40/4 Марка автомобиля АЦ 08-30/2 АЦ 2,5-40/4 АЦ 1,6-30 АЦ 2,5-40 АЦ 2,5-40 (40) (40)

Окончание табл. 3.5

АЦ 4,0-40 АЦ(С) 4,0-40	Урал 5557 Г, X, Ч, Э, С	Г, Х, Ч, Э, С	П	15480	240	9	4	0,24	40				40
АЦ 4,0-40/4	КамАЗ 43101	Г, Х, Ч, Э, С	П	12000	180	7	4	0,24	40				40
АЦ 5,0-40/4 (40)	KamA3 4925	Γ, Χ	П	14400	220	7	5,0	0,3	40	4	4	9	40
АЦ 5,0-40	КамАЗ 6х4 Урал 557 КамАЗ 6х6	Γ, Χ	П	16000	240	9	5,0	0,3	40				40
АЦ 5,8-40/4 (40)	KamA3 (6x4) MA3 4x2	Г,Х,Ч,Э, С	НП	16000	240	7	5,8	0,35	40	4	4	9	40
АЦ5,8-40	Ypan 6x6 KAMA3 6x6		П	16000	240	9	5,8	0,35	40		1	1	40
АЦ 6,3-40/4 (40)	Урал 6x6 МАЗ 4x2	Г, Х, Ч, Э, С	П	16000	240	7	6,3	0,38	40	4	4	9	40
АЦ 6,3-40	Урал 6x6 КамАЗ 6x6	Г, Х, Ч, Э, С	П	16000	240	9	6,3	0,38	40				40
АЦ 8,0-40	KamA3 6x4 MA3 6x4 KamA3 6x6	Γ, Χ	Н	20000	300	3 или 7	∞	0,48	40				40
Л 3,0-40- 17	ЛПЛ 3,0-40- КамАЗ 4х2, 17 6x6	ľ	Н	14700	220	3	3,15	0,19	40	4	Bы	Высота лестницы 17 м	ицы 17 м
АЦКП 3,0- 40/4-17	КамАЗ 4х2, 6х6	Γ	Н	14700	22	3	3,15	0,19	40	4	Высота и гру	подъема л зоподъемн	Высота подъема лестницы 17 м и грузоподъемность 300 кг
П 03-4/40	АПП 03-4/40 ГАЗ 270-5 Г. X, Ч, Э, С	Г, Х, Ч, Э, С	Н	3500	95	7	0,3	0,03	4	4			

Taktuko-texhin teekhe xapaktephetin	m okciinyain	pycmbix AII	n Alli
Показатели	АН-30(130) (модель 64А)	АН-40 (130E) (модель 127)	АНР-40(130) (модель 127А)
Максимальная скорость, км/ч	85	75	90
Число мест для боевого расчета, включая	10	9	9
водителя			
Масса с полной нагрузкой, кг	8000	8310	8200
Мощность двигателя, кВт (л.с.)	110(150)	110(150)	110(150)
Марка насоса	ПН-ЗОКФ	ПН-40К	ПН-40У
Подача воды при высоте всасывания 3.5 м,	1800	2400	2400
л/мин			
Напор, м	90	90	100
Наибольшая высота всасывания,м	7	7	7
Емкость бака для пенообразователя, л	500	350	350
Время всасывания воды с высоты 7м, с	30	35	30
Производительность пеносмесителя, м³/мин	8; 12; 80	4; 8; 12; 24	4,7; 9,4; 14,1;
			18,8; 23,5; 80
Рабочий напор в напорной полости насоса	80	80	80
при подаче пены, м			
Наибольший максимальный допустимый	30	30	30
подпор во всасывающей линии насоса при			
подаче пены, м			

- забор пенообразователя из посторонней емкости, дозирование его и подачу во всасывающую полость насоса, а раствора пенообразователя в напорные линии или к стационарному лафетному стволу, установленному на кабине водителя.

Подразделения, вооруженные автомобилями воздушно-пенного тушения, работают на крупных пожарах совместно с подразделениями, вооруженными автонасосами, автоцистернами и пожарными насосными станциями.

После израсходования огнетушащих средств (пенообразователя) подразделения могут быть использованы для подвоза воды на пожар забора ее из водоисточников с неудовлетворительными местами водозабора (заправив цистерну предварительно водой), а также для перекачки воды.

Тактико-техническая характеристика автомобилей пенного тушения приведены в табл. 3.10.

Тактико-технические характеристики автомобилей пенного тушения, предполагаемых к выпуску, приведены в табл. 3.11.

Пожарный автомобиль порошкового тушения служит для доставки к месту пожара личного состава боевого расчета, пожарного оборудования и порошковых огнетушащих составов. Подразделения на автомобилях порошкового тушения обеспечивают работу одного стационарного лафетного ствола, установленного на кабине водителя, или двух ручных порошковых стволов по рукавным линиям длиной 40 м. Автомобили используют как самостоятельные тактические единицы, а также во взаимодействии с аэродромными автомобилями при тушении пожаров на самолетах и вертолетах. Автомобили порошкового тушения не предназначены для исполь-

Таблица 3.7

									аолица о.,
Mapro		Общасти		Пошав		Мощность Число мест Подача	Подача	Ω	Запас
INIADRA	Тип шасси	TENTAGEMENT	Привод	иосов и		цвигателя, для боевого	насоса,	DINCCIAMOCIB	напорных
abiomodrum		применения		Macca, M	л. с.	расчета	л/с	IICHOUANA, M	рукавов, м
AHP-1,3-240	AHP-1,3-240 VA3 3162	C	П	2580	06	4	Мотопомпа		240
							600 л/мин		
AHP-40-800	АНР-40-800 ЗИЛ 4331	Г,Э	Н	11400	170	6	40	1,0	008
	3ИЛ 4334			00901	170				
	Урал (6х6)			12000	180				
	Урал 4325			11300	180				

Таблица 3.8

Показатели	ПНС-100(150К) (модель 66)	ПНС-110(131) (модель 131)
Максимальная скорость, км/ч	65	08
Число мест для боевого расчета, включая водителя	3	3
Масса с полной нагрузкой, кг	9780	11000
Габаритные размеры, мм:		
-длина	7550	7370
-ширина	2270	2500
-Bbicota	2570	2680
Наименьший радиус поворота, м	11,2	10,2
Расход горючего на 100 км, л	50	40
Модель насоса	ПН-100	ПН-110
Подача воды при высоте всасывания 3,5 м, л/мин	0009	0099
Напор, м	100	100
Наибольшая высота всасывания, м	7	L
Марка двигателя привода насоса	2Д12Б	2Д12Б
Мощность двигателя привода насоса, кВт (л. с.)	221 (300)	221 (300)
Время всасывания воды с высоты 7 м, с	70	02
Емкость бака для горючего, л:		
- автомобиля	150	170
- дизеля	250	250

Таблица 3.9

Тактико-технические характеристики пожарных насосных станций, предподагаемых к выпуску

I mm I			darundn	ranino com cono aparepromentativo de la company de la comp	an vanda	To william of	matum, upc,	unonan aci	a w vian	DILLY CINY		
_	OFIBETE			Monnocte	Число	FANCOTE	FMVOCTL	eneuol	Напоп	Pyk	Рукава	
_	-ыримене-	Привод	Macca, Kr	двигателя, л.с.	мест для боевого расчета	цистерны,	пенобака, м ³	насоса, л/с		Д-П	Д-Н	Высота мачты
	ú	Н	11400	185	7	3,15	0,19	20	200	-	-	9
	г, с, х, э, ч, л	п	10600	170	3	I	1	02	I	I	I	I
	г, с, х, э, ч, л	п	10600	170	ς,	ı	1	110	1	1	I	1
ПНС-110 Урал (6x6)	г, с, х, э, ч, л	п	12000	180	3	ı	I	110	ı	-	I	ı
			14700	220								

Таблица 3.10 Тактико-техническая характеристика автомобилей пенного тушения

Показатели	АВ-40 (375) (модель Ц50)	АВ-40 (375Н) (модель Ц50А)
Максимальная скорость, км/ч	75	75
Число мест для боевого расчета	7	7
Габаритные размеры, мм:		
- длина	8240	8600
- ширина	2520	2500
- высота	3000	3100
Масса с полной нагрузкой, кг	13580	14925
Наименьший радиус поворота, м	10,5	10,5
Мощность двигателя, кВт (л. с.)	129 (175)	129 (175)
Контрольный расход топлива, л/100 км	55	48
Запас хода по топливу, км	340	625
Марка насоса	ПН-40К	ПН-40УА
Подача воды при высоте всасывания 3,5 м, л/мин	2400	2400
Напор манометрический, м	90	100
Наибольшая геометрическая высота всасывания, м	7	7
Время всасывания воды из глубины 7 м, с	35	35
Ствол стационарный лафетный: марка	ЛС	ЛС-40
Пропускная способность по воде, л/с	40	40
Пропускная способность по пене, м3/мин	24	24
Производительность пеносмесителя, м³/мин	4; 8; 12; 24	4,7; 9,4; 14,1; 18,6; 23,5
Наибольший допустимый подпор во всасывающий линии насоса при подаче пены, м	80	80
Емкость, л:		
- цистерны для пенообразователя	4000	4000
- бака	170	180
Пеноподъемник, шт.	2	2
Высота подъема генераторов, м	12	12
Число пеногенераторов ГПС-600, шт.	2	2

Таблица 3.11 Тактико-технические характеристики автомобилей пенного тушения, предполагаемых к выпуску

Марка автомо- биля	Тип шасси	Область примене- ния	При- вод	Пол- ная мас- са, кг	Мощ- ность двигате- ля, л.с.	Число мест для б/ р, чел.	Емкость цистер- ны, м ³	Подача насоса, л/с	Расход из лафетного ствола, раствора, м ³ /с	Коли- чество пеноге- нерато- ров
АПТ 4,0-40	Урал 5557 КАМАЗ 43101	х, ч, э	П	15480 14500	240 220	3	4,0	40	24	2
АПТ 5,0-40	Урал(6x6) КАМАЗ (6x6)	х,ч,э	П	16000 14650	240 220	3	5,0	40	24	2
АПТ 6,3-40	Урал (6x6) КАМАЗ (6x6)	х,ч,э	П	16000	240	3	6,3	40	24	2
АПТ 8,0-40	KAMA3 (6x6)	х,ч,э	П	20000	300	3	8,0	40	24	2

Таблица 3.12 Тактико-техническая характеристика автомобилей порошкового тушения

Показатели	АП-3(130) (модель 148А)	АП-5 (53213) (модель 196)
Тип шасси	ЗИЛ-130	КамА3-53213
Число мест для боевого расчета	3	3
Габаритные рвазмеры, мм:		
- длина	6550	8600
- ширина	2500	2500
- высота	2900	3325
Масса с полной нагрузкой, кг	9270	17500
Наименьший радиус поворотам	8	9
Максимальная скорость, км/ч	90	100 1
Мощность двигателя, кВт (л.с.)	110 (150)	154 (210)
Контрольный расход топлива, л/100 км	28	25
Полезная емкость цистерны для	3-3,5	5,5
порошка, м ³		
Масса вывозимого порошка, кг	3000-3200	5500-6000
Неиспользуемый остаток порошка, кг	300	600
Ствол лафетный, шт.	1	1
- пропускная способность, кг/с	40	30-50
- дальность центра зоны эффектив-	3035	30
ной части порошковой струи, м		
- угол поворота в горизонтальной	360	270
плоскости, град.		
- угол поворота в вертикальной		
плоскости, град.:		
вверх	45	45
вниз	15	15
Способ подачи огнетушащего порошка	сжатым воздухом	сжатым воздухом
Ствол ручной		
- число, шт.	2	2
- пропускная способность с рукавом длиной 40м, кг/с	4	3—5
- дальность центра зоны эффектив- ной части порошковой струи, м	10	18
Высота подачи порошка по рукавной линии длиной 40 м и диаметром 51 мм, м	12-15	12-15
Рабочее давление у порошковой	0,4 (4)	0,43 (4,3)
установки. МПа (кгс/см2)		

зования во взрывоопасной среде.

Основные тактико-технические характеристики автомобилей порошкового тушения представлены в табл. 3.12., 3.13.

Таблица 3.13

Тактико-технические характеристики пожарных автомобилей порошкового тушения, предполагаемые к выпуску

				_
Расход лафетного ствола, кг/с	20	40	09	09
Масса порошка, кг	500	1000	2000	4000
Число мест для Масса порошка, боевого расчета кг	3	3	3	3
Мощность двигателя, л.с.	95	108	170	220
Полная масса, кг	3500	4250	00901	14500
Привод	П	П	П	П
Область применения	X,Π,H	X, ∏, H, ∋	6,4,X	€'h'X
Тип шасси	FA3 33027	ЗИЛ 4327	3ИЛ 4334	KAMA3 4310
Марка автомобиля	АП-500-20	АП-1000-40	АП-2000-60	АП-4000-60

Таблица 3.14

Тактико-технические характеристики автомобилей комбинированного тушения, предполагаемые к выпуску

Марка автомобиля	Тип шасси	Область применения	Привод	Полная масса, кг	мощность двигателя, л.с.	тощность число мест вигателя, для боевого л.с. расчета	смкость цистерны, м ³	масса вывозимого порошка, кг	нодача насоса, л/с	Расход воды (порошка), л/с, (кг/с)
KT 1,0/1000-40	3ИЛ 4334	$\Gamma, X, H, \mathfrak{3}$	П	10600	170	3	1,0	1000	40	40/40
AKT 2,0/2000-40	KAMA3 (6x4)	Г, Х, Ч, э	П	14500	220	3	2,0	2000	40	40/40

Таблица 3.15

Тактико-технические характеристики автомобилей газового тушения предполагаемые к выпуску

Масса СО ₂ , кг рукавных катушек	0001	1000	2000	4000
Число мест для боевого расчета	3	C	3	,
Мощность двигателя, л.с.	185	150	220	OCC
Полная масса, кг	11400	0008	14400	14400
Привод	Н		П	Ц
Область применения	6 11 1	1, 1, 3	F, H, Э	Спп
Тип шасси	ЗИЛ 4331	3ИЛ 4362	KAMA3 (6x4)	(V=9) GVVVA
Марка автомобиля	A LT 1000	A1 1-1000	ALT-2000	A LT 4000

4. СХЕМЫ БОЕВОГО РАЗВЕРТЫВАНИЯ ОСНОВНЫХ ПОЖАРНЫХ АВТОМОБИЛЕЙ*

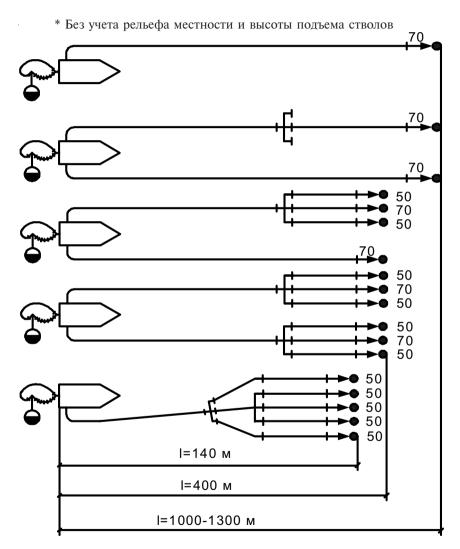
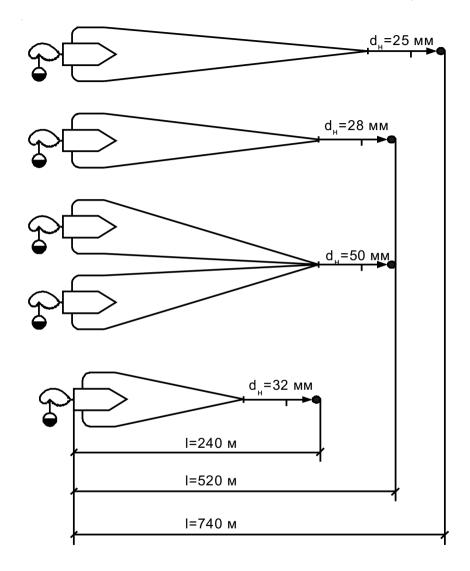



Рис. 4.1. Схемы боевого развертывания АЦ и АН при подаче воды

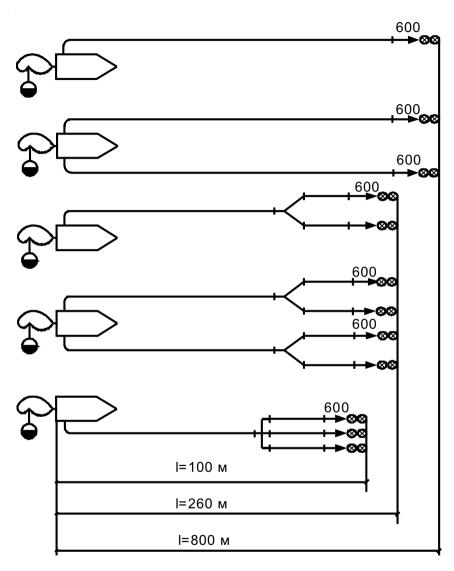
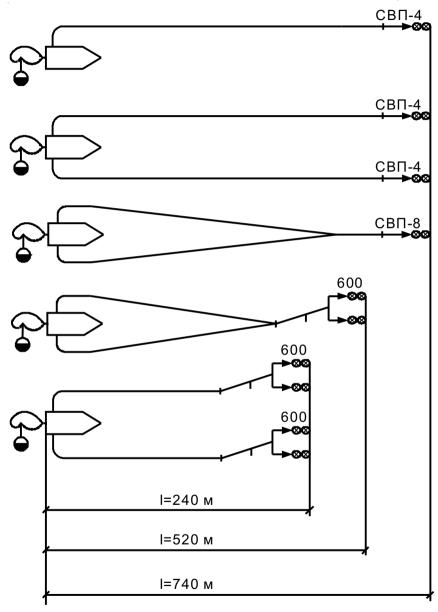



Рис. 4.2. Схемы боевого развертывания АЦ и АН при подаче пены

В схемах приняты: пожарные рукава магистральных линий прорезиненные d=77 мм, напор на насосах — 90 м, а на стволах и генераторах — 60 м, длина рабочих линий в схемах 3, 4 и 5 — 40 м, при применении прорезиненных рукавов d=66 мм или непрорезиненных рукавов d=77 мм для магистральных линий расстояния уменьшаются в 2 раза.

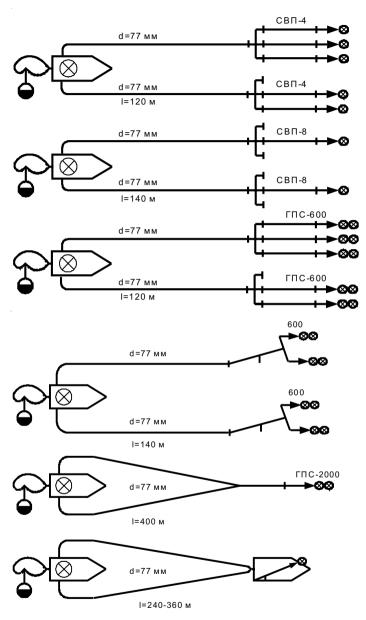


Рис. 4.3. Схемы боевого развертывания от автомобилей пенного тушения АВ-40 (375) Ц-50 Длина рабочих рукавных линий — 40 м.

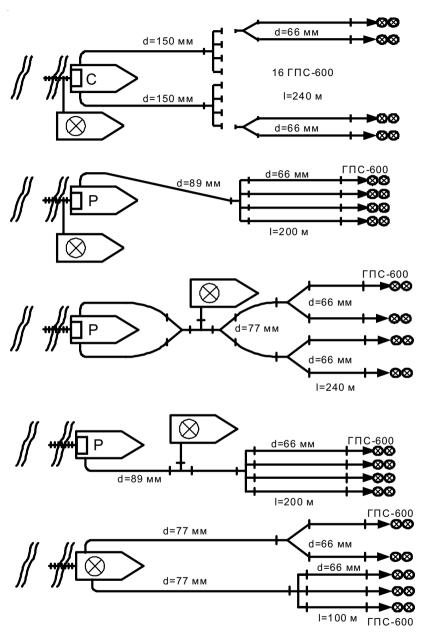
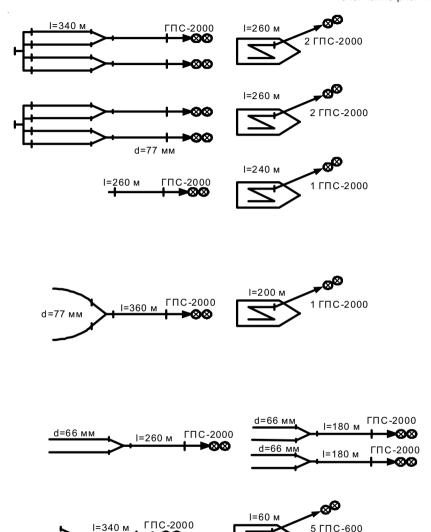



Рис. 4.4. Схемы боевого развертывания при подаче пены с использованием автомобилей пенного тушения

Напор на насосах принят 90 м, у генераторов 60 м, длина рабочих линий 40 м, высота пеномачт 12 м.

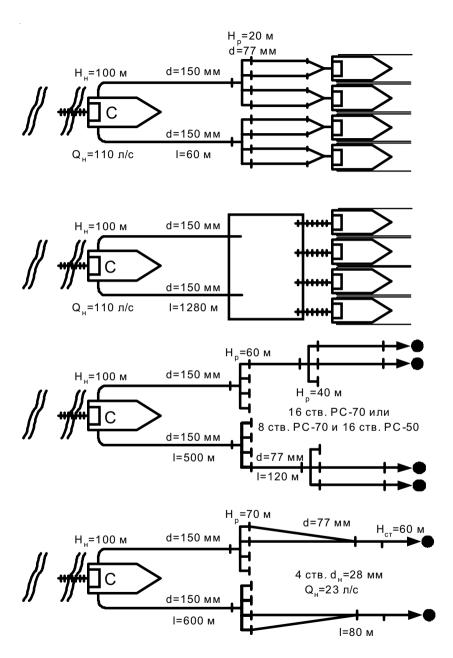
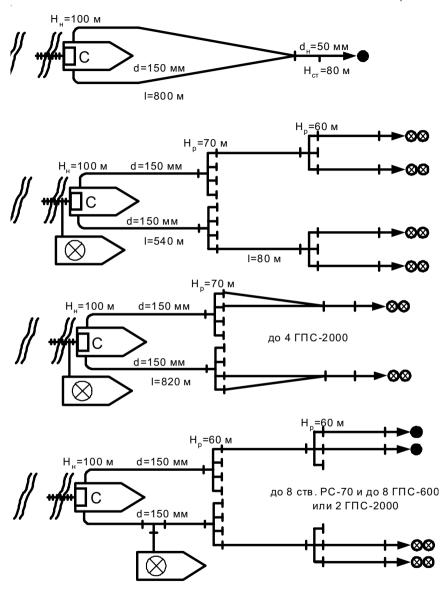



Рис. 4.5. Схемы боевого использования пожарной насосной станции ПНС-110

5. НОРМЫ УКОМПЛЕКТОВАННОСТИ ПОЖАРНЫХ АВТОМОБИЛЕЙ ПОЖАРНО-ТЕХНИЧЕСКИМ ВООРУЖЕНИЕМ, ОБОРУДОВАНИЕМ И ИНВЕНТАРЕМ

Таблица 5.1 Нормы укомплектованности автоцистерн пожарно-техническим вооружением, оборудованием и инвентарем

	оборудованием и инвентарем						
Nº		Ед.		Количеств			
n/n	Наименование вооружения и оборудования	⊏Д. ИЗМ.	АЦ-375 43202	АЦ-130 (63)	АЦ-131		
1	2	3	4	5	6		
1	Рукав всасывающий, 1 = 4 м, d = 125 мм	шт.	2	2	2		
2	Рукав всасывающий, 1 = 4 м, d = 75 мм	-"-	2	2	2		
3	Рукав напорный латексный для работы от гидранта, l=5м, d =77мм	-"-	2	2	2		
4	Рукав напорный латексный, l = 1 м, d = 66 мм	-"-	1	1	1		
5	Рукав напорный латексный, 1 = 20 м, d = 89 мм	-"-	5	3	5		
6	Рукав напорный латексный, 1 = 20 м, d = 77 мм	_"_	2	2	2		
7	То же, d = 66 мм	-"-	4	4	4		
8	Тоже, d = 51 мм	-"-	6	6	6		
9	Рукав всасывающий (дюритовый), l = 4 м, d = 30 мм	_"_	1	1	1		
10	Сетка для всасывающего рукава СВ-125, с веревкой l=12м	-"-	1	1	1		
11	Разветвление 4-х ходовое 89х66х66х66х66	-"-	1	1	1		
12	Разветвление 3-х ходовое 66х51х66х51	-"-	1	1	1		
13	Переходник (сборник) для работы от колонки c125x77x77c заглушками	_"-	1	1	1		
14	Гайка переходная 125х89 мм	-"-	1	1			
15	Гайка переходная с накидной муфтой 89х89	_"_	1	1	1		
16	Головка соединительная переходная 66х51	_"_					
17	Головка соединительная переходная 77х51	-"-	3	3	3		
18	Головка соединительная переходная 77х66	_"_	3	3	3		
19	Задержка рукавная	_"-	4	4	4		
20	Комплект инструмента колонщика, в том числе:						
	молоток слесарный	-"-	1	1	1		
	зубило	-"-	1	1	1		
	зажимы рукавные	-"-	4	4	4		
	кольца уплотнительные рукавные:	-"-					
	d = 66 MM	-"-	3	3	3		

Продолжение табл. 5.1

			продо	іжение	1a011. 5. I
1	2	3	4	5	6
	d = 77 MM	-"-	3	3	6
	d = 89 MM	-"-	3	3	-
	флажок сигнальный красный	-"-	1	1	1
	сумка для инструмента колонщика	-"-	1	1	1
21	Колонка пожарная	_"_	1	1	1
22	Ключи для соединения всасывающих рукавов		2	2	2
23	Ключ для соединения напорных рукавов d = 89	_66_	2	2	2
23	мм			2	2
24		_"_	1	1	1
	Ключ для открывания крышки гидранта	_"_			<u> </u>
25	Гидроэлеватор Г-600		1	1	1
_26	Ствол РСБ	-"-	3	3	3
27	Ствол КРБ	_"-	2	2	2
_28	Ствол РСА	-"-	2	2	2
29	Ствол воздушно-пенный СВПМ-4	-"-	2	2	2
30	Ствол лафетный стационарный	_"_	1	_	1
31	Ствол лафетный переносной	_"_	-	1	-
32	Генератор пены средней кратности ГПС-600	_"_	2	2	2
33	Генератор пены средней кратности ГПС-200	_"_	1	1	1
34		_"_	_		
	Лестница трехколенная		1	1	I
35	Лестница штурмовая	_"_	1	1	1
36	Лестница-палка	-"-	1	1	1
37	Багор металлический 1 = 2,5 м	-"-	1	1	1
38	Лом легкий	-"-	1	1	1
39	Лом тяжелый	-"-	2	1	2
40	Лом с шаровой головкой	_"-	1	1	1
41	Лом "универсальный"	_"-	1	1	1
42	Кувалда кузнечная т = 5 кг	_"_	1	1	1
43	Топор плотницкий	_"_	1	1	1
	•	_"_	1	1	
44	Крюк пожарный легкий	_"_			1
45	Лопата штыковая		1	1	1
46	Пила-ножовка по дереву в деревянном футляре	_"_	1	1	1
47	Ножницы для резки арматуры (металлической)	-"-	1	1	1
48	Комплект инструментов для резки				
	электропроводов, в том числе:				
	сумка для комплекта	-"-	1	1	1
	ножницы с диэлектрическими рукоятками	-"-	1	1	1
	перчатки диэлектрические	пара	1	1	1
	боты диэлектрические	-"-	1	1	1
	коврик диэлектрический	шт.	1	1	1
49	Веревка спасательная, длиной 30 м в чехле	_"_	2	2	2
50	Кислородный изолирующий противогаз или	-"-	4	4	4
	воздушный аппарат				
51	Теплоотражательный костюм	_"_	3	3	3
52	Сапоги резиновые	_"_	5	5	5
53	Нагрудный сигнальный фонарь с красным	_"_	1	1	1
	стеклом				
		•			•

1	2	3	4	5	6
54	Электрический индивидуальный фонарь ФЭП-	-"-	4	5	5
	И				
55	Аптечка медицинская	Компл	1	1	1
56	Огнетушитель ОУ-5	шт.	1	1	1
57	Огнетушитель порошковый ОПУ-5	_"-	2	2	2
58	Сумка связного с документами, в том числе:	-"-	1	1	1
	справочник оперативных телефонов	-"-	1	1	1
	акт о пожаре	_"_	10	10	10
	бланки объяснений	-"-	10	10	10
59	Опись пожарно-технического оборудования	-"-	1	1	1
60	Комплект шоферского инструмента	Компл	1	1	1
61	Автомобильная радиостанция	шт.	1	1	1
62	Переносная радиостанция	_"-	2	2	2
63	Знак аварийной остановки	-"-	1	1	1
64	Аварийно-спасательный инструмент ИРАСС	-"-	1	1	1
65	Универсальный спасательный прибор инди-	_"_	1	1	1
	видуальный				
66	СПУ-ЗА	-	1	1	1
67*	Канатно-спусковое спасательное устройство	-"-	2	2	2
68*	Гидравлический аварийно-спасательный	Компл	1	1	1
	инструмент				

Примечания:

- 1. В боевом расчете должно находиться по одной переходной головке "Ротт-Богдановская" диаметром 51х51 и 66х66 мм, которые изготавливаются на базе дежурных караулов.
- 2. В боевом расчете должны находиться справочники гидрантов и планшеты водоисточников соседних подразделений.
- 3. В подразделениях, где в боевом расчете вместо рукавов d=89 мм находятся рукава d=77 мм, их количество должно соответствовать указанному в табеле, кроме этого, вместо разветвления 89x66x66x66 должно быть разветвление 77x51x66x51.

Таблица 5.2 Нормы укомплектованности АНР-40(130-127) пожарно-техническим вооружением, оборудованием и инвентарем

Nº п/п	Наименование	Ед. изм.	Кол-во
1	2	3	4
1	Рукав всасывающий, $1 = 4$ м, $d = 125$ мм	шт.	2
2	Рукав всасывающий, l= 4м, d= 75 мм	_"_	2
3	Рукав напорный латексный для работы от гидранта, $l = 4 \text{ м}, d*77 \text{ мм}$	_"-	2
4	То же, 1 = 20 м	-"-	2
5	Рукав напорный латексный, l = 1м, d= 66мм	-"-	1
6	Рукав напорный латексный, $1 = 20$ м, $d = ,89,77$ мм	-"-	16
	d = 89,77 mm.	-"-	4
	d = 66 mm	-"-	8
	d = 51 mm	_"_	12

Продолжение табл. 5.2

		. продолико.	100 10011. 0.2
1	2	3	4
7	Рукав всасывающий, $l = 4$ м, $d = 30$ мм	-"-	1
8	Сетка для всасывающего рукава СВ, с веревкой l = 12 м	-"-	1
9	Разветвление 4-ходовос 89х66х66х66х66	-"-	1
10	Разветвление 3-ходовое 66х51х66х51	-"-	1
11	Переходник для работы от колонки 125х77х77 с заглушками	-"-	1
12	Гайка переходная 125х89 мм	_"_	1
13	Гайка переходная с накидной муфтой 89х89	_"_	1
14	Гайка переходная с наружной резьбой 89х89	_"_	1
15	Головка соединительная переходная 66х51	_"_	4
16	Головка соединительная переходная 77х66	_"_	2
17	Комплект инструмента колонщика, в том числе:	_"_	11
	молоток слесарный	_"_	1
	зубило	_"_	1
	зажимы рукавные	_"-	3
	кольца уплотнительные рукавные $d = 51 \text{ мм}$	_"_	3
	d = 66 MM	_"_	3
	d = 77 MM	_"_	3
	d = 89 MM	_"_	3
	развертка 66х51 мм	_"_	1
18	Сумка для инструмента колонщика	_"_	1
19	Колонка пожарная	_"_	•
20	Флажок сигнальный красный	_"_	1
21	Ключи для соединения всасывающих рукавов		4
22	Ключ для соединения напорных рукавов d=89 мм	_"_	1
23	 		1
24	Крюк для открывания крышки гидранта		1
	Ключ торцевой для открывания гидрантов		1
25 26	Седло рукавное		_
	Гидроэлеватор Г-600		2
27	Мостик рукавный		1
28	Катушка рукавная с брезентовым чехлом	_"_	2
29	Ствол комбинированный	_"-	2
30	Ствол РСБ	_"-	2
31	Ствол РСА	-"-	2
32	Ствол воздушно-пенный СВПЭ-4	_"_	2
33	Ствол лафетный облегченный	_"-	1
34	Генератор ГПС-600	_"_	2
35	Генератор ГПС-200	_"_	2
36	Лестница трехколенная	_"-	2
	Лестница штурмовая	_"-	1
	Лестница-палка	_"-	1
	Багор металлический 1 = 2,5 м	_"-	1
41	Лом легкий	-"-	3
42		_"-	2
43	Лом с шаровой головкой	_"_	1
	Лом "универсальный"	_"_	1
	Вилы	_"_	1
_	Кувалда кузнечная <i>m</i> =5 кг	_"_	1
	,		

	<u> </u>	Окончан	ие таол. 5.2
1	2	3	4
	Топор плотницкий	-"-	1
48	Топор большой пожарный	_"_	1
	Крюк пожарный легкий	_"_	1
50	Лопата штыковая	_"_	1
	Лопата совковая	_"_	1
52	Пила поперечная в деревянном футляре	_"_	1
53	Пила-ножовка по дереву в деревянном футляре	_"-	1
54	Бензомоторная пила "Дружба"	_"_	1
55	Ножницы для резки арматуры	Компл.	1
56	Комплект инструментов для резки электропроводов:		
	деревянный ящик или сумка	-"-	1
	ножницы с диэлектрическими рукоятками	-"-	1
	перчатки диэлектрические	пара	1
	боты диэлектрические	-"-	1
	коврик диэлектрический	шт.	1
	Веревка спасательная в брезентовом чехле, l= 30 м	_"_	3
58	Изолирующий противогаз или воздушный аппарат	-"-	5
59	Сапоги резиновые	пара"-	5
61	Нагрудный сигнальный фонарь с красным стеклом	_"_	1
62	Электрический индивидуальный фонарь ФЭП-И	_"_	6
63	Электрический групповой фонарь ФЭП-Г	-"-	2
64	Аптечка медицинская	шт.	1
65	Огнетушитель ОУ-5	-"-	1
66	Огнетушитель порошковый	-"-	1
67	Сумка связного для документов:	-"-	1
68	Документы связного:	_"_	
	акт о пожаре	_"_	10
	административный акт	_"_	10
	статлисток	_"_	10
	набор цветных карандашей	набор	1
69	Справочник (планшет) водоисточников	шт.	1
70	Опись ПТВ	-"-	1
71	Комплект шоферского инструмента	компл.	1
	Автомобильная радиостанция	шт.	1
	Переносная радиостанция	_"_	1
	Аварийно-спасательный инструмент	_"_	2
75		_"_	1
	Распылитель веерный PB-12	_"_	1
	Канатно-спусковое спасательное устройство	_"_	2
	Натяжное спасательное полотно.	_"_	1
79	Гидравлический аварийно-спасательный инструмент	компл.	1
80	Пневматическое прыжковое спасательное устройство	шт.	1
	111102.11111 100.000 iipbi.kkoboe eliaeatesibiloe yetponetbo		

Примечания:

 $1.\ B$ боевом расчете должно находиться по одной переходной головке "Ротт-Богдановская" диаметром 51x51 и 66x66 мм, которые изготавливаются на базе дежурных караулов.

- 2. В боевом расчете должны находиться справочники гидрантов и планшеты водоисточников соседних подразделений.
- 3. Для подразделений, где на вооружении вместо рукавов d=89 мм находятся рукава d=77 мм:
- их количество должно соответствовать количеству рукавов диаметром 89 мм. указанному в настоящем табеле;
- вместо разветвлений 89x66x66x66 и 66x51x66x51 в боевом расчете должны находиться два разветвления 7x51x66x51:
- вместо переходных гаек 89х89 с накидной муфтой и наружной резьбой в боевом расчете должны находиться переходные гайки 77х89 с накидной муфтой 77х89 с наружной резьбой.
- 4. В подразделениях со специальными отделениями в боевых расчетах должно находиться 2 веерных распылителя P-12.

Таблица 5.3 Нормы укомплектованности ПНС-110 (131) пожарно-техническим вооружением, оборудованием и инвентарем

№ п/п	Наименование оборудования, вооружения и инвентаря	Ед. изм	Количество
1	Рукав всасывающий $d = 200$ мм, $l = 4$ м	шт.	2
2	Сетка всасывающая СВ-260	-"-	1
3	Ключ для соединения всасывающих рукавов	-"-	2
4	Ключ для соединения напорных рукавов $d = 250$ мм	-"-	2
5	Тройник 200х150х150 мм	-"-	1
6	Четырехходовое разветвление 150х77х77х77х77	-"-	1
7	Огнетушитель ОУ-5 или ОПУ-5	_"_	1
8	Ручная лебедка	-"-	1
9	Топор плотницкий	_"_	1
10	Лопата штыковая	_"-	1
11	Комплект шоферского инструмента	Компл.	1
12	Комплект инструмента инструктора насосной станции	_"_	1
13	Лом с шаровой головкой	шт.	1
14	Автомобильная радиостанция	_"_	1
15	Аптечка медицинская	-"-	1
16	Опись ПТВ	-"-	1

Таблица 5.4 Нормы укомплектованности автомобиля воздушно-пенного тушения пожарнотехническим вооружением, оборудованием и инвентарем

Nº π/π	Наименование оборудования вооружения и инвентаря	Ед. изм.	Коли- чество
1	2	3	4
1	Рукав напорный латексный, $/ = 20$ м, $d = 89$ мм	шт.	3
2	Рукав напорный латексный, $/ = 20 \text{ м}, d = 66 \text{ мм}$	-"-	8
3	Рукав напорный латексный, $/ = 20$ м, $d = 51$ мм	-"-	4
4	Пеномачта с комплектом труб и струбцин	_"-	2
5	Рукав напорный латексный дня работы от гидранта $1 = 5 \text{м}$, $d = 77$	-"-	1
	MM		
6	Рукав напорный латексный, $I = 1$ м, $I = 66$ мм	-"-	1
7	Ствол воздушно-пенный СВПМ-4	-"-	2
8	Рукав напорно-всасывающий 1=4м d=75мм	_"_	2

Окончание табл. 5.4

1	2	3	4
	Генератор пены средней кратности ГПС-600	-"-	6
	Генератор пены средней кратности ГПС-2000	-"-	2
11	Рукав всасывающий / = 4 м, d = 75 мм	-"-	2
12	Колонка пожарная	_"_	1
13	Ключ для соединения всасывающих рукавов	_"_	2
14	Шланг для забора пенообразователя / = 20 м	-"-	1
15	Комплект инструмента колонщика, в том числе:	-"-	1
	молоток слесарный	-"-	
	зубило	-"-	1
	зажимы рукавные	-"-	4
	кольца резиновые уплотнительные $d = 89$ мм:	-"-	2
	d= 77 mm	-"-	2
	d = 66 MM	-"-	2
	<i>d</i> = 51 mm	-"-	2
\Box	развертка 66х51 мм	_"_	1
16	Сумка для инструмента колонщика	-"-	1
17	Ключ для открывания крышек гидрантов	_"_	1
18	Ключ для соединения напорных рукавов d= 89 мм	-"-	2
	Гайка переходная 125х89 мм	_"_	1
20	Гайка переходная с накидной муфтой 89х89	-"-	1
21	Гайка переходная с наружной резьбой 89х89	_"_	1
22	Головка соединительная переходная 77х66	-"-	2
23	Головка соединительная переходная 77х51	_"_	2
24	Головка соединительная переходная 66х51	_"_	2
	Переходник (сборник) для работы от колонки 125х75х77 мм с	_"_	1
	заглушками		
26	Разветвление 4-ходовос 89х66х66х66х66 мм	_"_	1
	Разветвление 3-ходовос 66х51х66х51 мм	_"_	2
	Сетка для всасывающего рукава CB-125 с веревкой l= 12 м	_"_	1
	Тройник 77х66х66 мм	_"_	2
	Магистральный пеносмеситель	_"_	2
	Тсплоотражательный костюм	_"_	3
	Лом с шаровой головкой	_"_	1
	Лом тяжелый	-"-	1
_	Лопата штыковая	_"_	1
-	Пила-ножовка	_"_	1
-	Огнетушитель ОУ-5	-"-	1
37	Аппараты КИП-8, АиР-317	_"_	2
_	Аптечка медицинская	-"-	1
	Комплект шоферского инструмента	-"-	1
$\overline{}$	Автомобильная радиостанция	_"_	1
	Знак аварийной остановки	-"-	1
41		-"- -"-	1

Таблица 5.5. Нормы укомплектованности автомобиля порошкового тушения АП-5(53213) модель 196 пожарно-техническим вооружением, оборудованием и инвентарем

№ п/п	Наименование вооружения и оборудования	Ед. изм.	Коли- чество
1	Рукав резинотканевый, $1 = 20$ м, $d = 51$ мм	шт.	10
_ 2	Ствол ручной для подачи порошка	-"-	2
3	Ствол турельный	-"-	1
4	Комплект инструментов для резки электропроводов:	-"-	
	брезентовая сумка	-"-	1
	ножницы с диэлектрическими рукоятками	-"-	1
	перчатки диэлектрические	пара	1
	боты диэлектрические	-"-	1
	коврик диэлектрический	IIIT.	1
5	КИП-8	-"-	2
6	Электрический фонарь групповой	-"-	2
_ 7	Веревка спасательная в брезентовом чехле, / = 30 м	-"-	2
8	Сапоги резиновые	пара	2
9	Лопата штыковая	шт.	1
10	Лом легкий	-"-	2
11	Лом "универсальный"	-"-	1
12	Багор	-"-	1
13	Теплоотражательный костюм	-"-	2
14	Топор плотницкий	-"-	1
15	Колодки упорные	-"-	2
16	Очки защитные	-"-	2
17	Респиратор	-"-	2
18	Сменный успокоитель порошковой струи лафетного, ствола	-"-	1
19	Рукавные задержки	-"-	5
20	Ключи для соединения напорных рукавов	-"-	2
21	Шланг для обдувки / = 4 м, d = 20 мм	-"-	1
22	Огнетушитель ОУ-2	_"-	1
23	Огнетушитель ОУ-5	-"-	2
24	Шланг для зарядки баллонов	_"-	2
25	Аптечка медицинская	-"-	1
26	Знак аварийной остановки	-"-	1
27	Комплект инструментов тех. обслуживания автомобиля	-"-	1
28	Автомобильная радиостанция	_"-	1
29	Планшеты районов выезда подразделений гарнизона	_"_	1
30	Опись ПТВ	_"-	1

6. ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СПЕЦИАЛЬНЫХ ПОЖАРНЫХ АВТОМОБИЛЕЙ

6.1. Типы специальных пожарных автомобилей

Специальные пожарные автомобили предназначены в зависимости от типа выполняемых работ, сопровождающих тушение пожара классифицируются следующие типы:

- АЛ пожарная автолестница предназначена для проведения аварийно-спасательных работ на высоте, подачи огнетушащих веществ на высоту и может использоваться в качестве грузоподъемного крана при сложенном комплекте колен.
- $AK\Pi$ пожарный коленчатый автоподъемник предназначен для проведения аварийно-спасательных работ на высоте, подачи огнетушащих веществ на высоту и использоваться в качестве грузоподъемного крана при сложенном комплекте колен.
- ACA пожарный аварийно-спасательный автомобиль предназначен для проведения аварийно-спасательных работ на месте пожара или чрезвычайного происшествия.
- AB3 пожарный водозащитный автомобиль предназначен для защиты материальных ценностей отвода, её удаления при тушении пожара.
- ACO пожарный автомобиль связи и освещения предназначен для освещения места работы пожарных подразделений на месте пожара (аварии) и обеспечения связи с центральным пунктом пожарной связи.
- $A\Gamma$ пожарный автомобиль газодымозащитной службы предназначен для удаления дыма из помещений, освещения места пожара, проведения аварийно-спасательных работ с помощью специального инструмента и оборудования.
- АД пожарный автомобиль дымоудаления предназначен для удаления дыма из подвалов, лестничных клеток, лифтовых шахт многоэтажных зданий и иомещений большого объема, получения воздушномеханической пены высокой кратности и подачи ее в очаг горения создания заградительных полос из воздушно-механической пены на пути распространения пламени.
- AP пожарный рукавный автомобиль предназначен для механизированной прокладки и уборки магистральных рукавных линий, тушения пожаров водяными и воздушно-пенными струями с помощью стационарного и переносных лафетных стволов.
- АШ пожарный штабной автомобиль предназначен для обеспечения оперативной работы штаб пожаротушения на месте пожара.
- АЛП пожарная автолаборатория предназначена для проведения оперативной группой специальных анализов и измерений в зонах пожаров.

АПРСС — пожарный автомобиль профилактики и ремонта средств связи — предназначен для диагностики и ремонта средств связи.

 $A B \Gamma$ — пожарный автомобиль-база газодымозащитной службы (ГДЗС) — предназначен для обслуживания и зарядки средств защиты органов дыхания (СИЗОД).

АПТС — пожарный автомобиль технической службы — предназначен для оценки технического состояния и ремонта пожарной техники.

АОПТ — автомобиль отогрева пожарной техники — предназначен для обеспечения работы пожарной техники и оборудования при отрицательной температуре.

 ΠKC — пожарная компрессорная станция — предназначена для заправки кислородом (воздухом) баллонов СИЗОД на передвижных базах ГДЗС.

6.2. Тактико-технические характеристики специальных пожарных автомобилей

Пожарные коленчатые подъемники и автолестницы предназначены для подъема пожарных в верхние этажи зданий и сооружений, для спасания людей из верхних этажей горящих здании.

Подразделения, вооруженные автолестницами, во взаимодействии с подразделениями на основных пожарных машинах обеспечивают подачу огнетушащих средств и ввод их на тушение пожаров в верхние этажи, проведение спасательных работ из верхних этажей и эвакуацию имущества, работу лафетного ствола, закрепленного верхнем колене лестницы или в корзине автоподъемника, а также для подачи пены средней кратности на высоту.

Пожарные автомобили связи и освещения доставляют к месту пожара боевой расчет и комплект специального, оборудования для обеспечения связи и освещения на месте пожара.

Тактико-технические характеристики автолестниц и коленчатых подъемников приведены в табл. 6.1.

Подразделения, вооруженные автомобилями связи и освещения, могут обеспечить связь управления с помощью переносных радио станций, громкоговорящей установки, телефонной связи, связь информации с помощью автомобильных радиостанций и телефона, подключаемого к АТС, а также освещение до шести боевых позиций при работе подразделений на пожаре. Данный автомобиль может использоваться в качестве электростанции, обеспечивающий электроэнергией агрегаты освещения, связи и электроинструменты, Подача электроэнергии осуществляется от генератора, установленного непосредственно на автомобиле, либо от городской электросети.

Тактико-техническая характеристика пожарных автомобилей связи и освещения приведена в табл. 6.2.

Таблица 6.1

I aktuko-	техничес	кие характ	еристики :	гактико-технические характеристики автолестниц и коленчатых подъемников	ц и коленч	атых подъ	емников		
Характеристика	АЛ-30 (43101)	АЛ-37 (53213)	АЛ-50 (53229)	AKTI-32 (53213)	AKП-35 (53213)	AKП-50 (6923)	AKП-30 (375)	Бронто- 330	AKП-30
Шасси	KamA3- 43101	KaMA3- 53213	КамА3- 53229	КамА3- 53213	КамА3- 53213	M3KT-	Урал	КамАЗ	KamA3-
	(9*9)	(6*4)	(6*4)	(6*4)	(6*4)	6923 (8*4)	4		53213
Мощность двигателя, л.с.	210	210	210	210	210	330	180	260	210
Число мест для боевого расчета	3	3	3	3	۲	۲	3	٤	,
(включая водителя)		,	,		,	Ċ		ì	1
Максимальная рабочая высота, м	30	27	50	32	35	09	30	30	30
Максимальный рабочий вылет, м	16	18	18/20	61	18	07	27,2		17
Грузоподъемность неприслонен-	350	300	300	1	ı	1	ı	ı	1
ной лестницы, кг	2	200	200						
Грузоподъемность люльки, кг	200	200	200	350	350	400	320	350	350
Грузоподъемность лифта, кг	_	_	200	_	_	_	_	_	_
Габаритные размеры, мм, не 60-									
лее:									
длина	12000	10500	14000	11000	14000	12500	12000	14300	I
ширина	2500	2500	2500	2500	2500	2500	2500	2500	I
высота	3600	3700	3700	3500	3500	3700	3800	3600	I
Полная масса, кг	15800	20000	22800	19000	19000	34500	-	-	19500
Привол	П	Н	Η	Η	Η	Η	Н	Η	П

Окончание табл. 6.1

Характеристика	AK⊓-40	AKП-50	АЛ-30 (131) Л21	АЛ-30 (131) АЛ-30 (131) АЛ-45 (200) Л21 Л22 ЛД	АЛ-45 (200) ЛД	A45 (257) ITM-109	АЛ-30	АЛ-40	AЛ-50	АЛ-60
Изготовитель	1	_	_	_	_	_	_	_	-	1
Шасси	КамА3- 53229	MA3- 6923	3ИЛ-131	3ИЛ-131 3ИЛ-131 MA3-200	MA3-200	KpA3- 257	KawA3- 53213 (43101)	КамАЗ- 53209	КамАЗ- 53228	MA3- 6923
Мощность двигателя, л.с.	210	330	150	150	120	240	210	220	220	330
Число мест для боевого расчета (включая водителя)	2	2	5	5	5	3	2	2	2	2
Максимальная рабочая высота, м	40	90	30	30	45	45	30	40	20	09
Максимальный рабочий вылет, м	20	22	_	_	T	_	70	20	20	200
Грузоподъемность люльки, кг	200	400	-	_	T	-	200	200	200	200
Грузоподъемность лифта, кг	I	1	-	180	1	180	_	_	1	1
Габаритные размеры, мм, не более:										
длина	I	1	0086	0086	10150	10640	1	1	1	I
ширина	I	ı	2500	2500	2660	2740	ı	1	ı	I
Bысота	I	ı	3160	3160	3400	3400	-	-	1	I
Полная масса, кг	24000	34500	10300	10500	13350	18230	15800	19500	22800	34500
Привод	П	П	_	_	_	_	Η	Η	Н	П
Угол подъема	I	1	_	_	-	1	_	_	_	1
Время подъема на максимальный угол. с	I	I	55	25	99	120	_		I	I

Таблица 6.2 Тактико-техническая характеристика пожарных автомобили связи и освещения

Показатели	ACO-5(66) (модель 90)	ACO-12(66) (модель 90A)		
Шасси	ГАЗ 66 -01	ГАЗ 66 -01		
Число мест для боевого расчета	5	5		
Габаритные размеры, мм:				
длина	5620	5655		
ширина	2300	2322		
высота	2880	2880		
Масса с полной нагрузкой, кг	5650	5780		
Наименьший радиус поворота, м	9,5	9,5		
Максимальная скорость, км/ч	85	85		
Мощность двигателя кВт (л.с.)	85(115)	85(115)		
Контрольный расход топлива на 100 км, л	24	24		
Запас хода по топливу, км	870	870		
Генератор:				
марка	EC-52-4C	ECC5-62-42-M-101		
напряжение, В	230/127	230		
мощность, кВт	12	12		
Прожектор стационарный:				
тип	ПЗС-45	ПКН-1500		
напряжение, В	220	220		
мощность, Вт	1000	1500		
лампа накаливания	KH-220-1000	КН-220-150		

Таблица 6.3 Пожарные автомобили связи и освещения, предполагаемые к выпуску

Марка автомобиля	Тип шасси	Область применения	Привод	Полная масса, кг	Мощность двигателя, л.с.
ACO-12	ГАЗ-2705	Г, Х, Т, Ч,Э	Н	3500	95
	ЗИЛ-3250			6600	108,8
	ПАЗ-3205			7090	120
ACO-16	ПАЗ-3206	Г, Х, Т, Ч,Э	Н	7090	120
	ЗИЛ-432732			7250	108,8
ACO-20	KAMA3-43101	Г, Х, Т, Ч,Э	П	12000	180
ACO-20	Урал-43203-01	1, 7, 1, 4,5	11	13000	210

Окончание табл. 6.3

Марка автомобиля ACO-12	Число мест для боевого расчета	Мощность встроенного генератора, КВт	Мощность выносного генератора, КВт	Высота мачты, м
ACO-12	3	12	4	Ü
ACO-16	б	16	4	8
ACO-20	6	20	5	8

Автомобили газодымозащитной службы доставляют к месту пожара или аварии личный состав, средства дымоудаления, аппараты защиты органов дыхания, специальное оборудование инструменты, средства связи и освещения. Подразделения, вооруженные автомобилями газодымозащитной службы, во взаимодействии с подразделениями на основных и специальных пожарных автомобилях осуществляют спасание людей, проводят разведку и ликвидируют горение в задымленной и отравленной атмосфере, а также создают условия для успешного тушения пожаров подразделениями пожарной охраны. Отделение на автомобиле ГДЗС может работать в полном составе двух звеньев.

Тактико-технические характеристики автомобилей газодымозащитной службы приведены в табл. 6.4.

Пожарные автомобили газодымозащитной службы, предполагаемые к выпуску, приведены в табл. 6.5.

Таблица 6.4 Тактико-технические характеристики автомобилей газодымозащитной службы

			•
Показатели	АГДЗС(150)	АГДЗС(164)	АГДЗС (130)
Число мест для боевого расчета	28	28	28
Генератор:	АПНС-85	АПНТ-85	ECC 562-4M
напряжение, В	230	230	230
мощность, кВт	7,2	7,2	12

Таблица 6.5 Пожарные автомобили газодымозащитной службы, предполагаемые к выпуску

Марка автомобиля	Тип шасси	Область применения	Привод	Полная масса, кг	Мощность двигателя, л.с.	Число мест для боевого расчета	Мощность встроенного генератора, кВт	Мощность выносного генератора, кВт	Высота мачты, м
ΑΓ-12	ΓΑ3- 2705	Γ, X, T, Ψ,Э	Н	3500	95	4	12	4	6
ΑΓ-16	ЗИЛ- 3250	Г, X, Т. Ч,Э	Н	6600	108,8	7	16	5	8
	ЗИЛ- 5301			6600	108,8	7			
	ПАЗ- 3205			7090	120	8			
	КАВЗ- 3976			5970	120	8			
ΑΓ-20	КамАЗ- 43101	Г, Х. Т. Ч,Э	П	12000	180	8	20	5	8
	Урал- 43203- 01			13000	210				

Пожарные рукавные автомобили осуществляют прокладку одной или двух одновременно магистральных рукавных линий на ходу движения автомобиля со скоростью 9-12 км/ч из рукавов диаметром 150, 89, 77 мм; механизированную намотку рукавов в скатки, погрузку и транспортирование их с пожара, а также могут подавать мощные струи воды или воздуш-

но-механической пены для тушения пожаров с помощью стационарного лафетного ствола, установленного на кабине водителя.

Тактико-технические характеристики пожарных рукавных автомобилей приведны в табл. 6.6.

Пожарные рукавные автомобили, предполагаемые к выпуску, привелены в табл. 6.7.

Таблица 6.6 Тактико-технические характеристика пожарных рукавных автомобилей

Показатели	AP-2 (157К) (модель 121)	AP-2 (131) 1 (модель 133)
Тип шасси	ЗИЛ-157	ЗИЛ-131 1
Число мест для боевого расчета	3	3
Габаритные размеры, мм:		
-длина	7000	7275
-ширина	2650	2536
-высота	2900	3030
Масса с полной нагрузкой, кг	19400	10425
Наименьший радиус поворота, м	11,2	10,2
Максимальная скорость, км/ч	65	80
Мощность двигателя, кВт (л.с.)	80(1090)	110(150)
Контрольный расход топлива, л/100 км	42	40

Таблица 6.7 Пожарные рукавные автомобили, предполагаемые к выпуску

		10			/ *				
Марка автомобиля	Тип шасси	Область применения	Привод	Полная масса,	Мощность двигателя,	Число мест для	рука	ина вных й, км	Расход через лафетный
шытомосили		применения		КГ	л. с.	боевого расчета	150мм	77мм	ствол, л/с
A.D. 2	Урал- 5557	ГИО	1	12000	180	2	2	2	40
AP-2	КАМАЗ- 43101	Г, Ч, Э	П	14400	220	3	2	3	40

Пожарные автомобили технической службы, связи и освещения служат для обеспечения боевых действий на пожаре, проведения. аварийноспасательных работ. Подразделения, вооруженные этими автомобилями, с помощью струйных дымососов удаляют дым или подают свежий воздух в помещения с непригодной для дыхания атмосферой, вскрывают железобетонные конструкции с помощью отбойных молотков и бетоноломов, гидравлическим краном разбирают завалы, тяговой лебедкой оказывают помощь машинам, потерпевшим аварию освещают боевые позиции при проведении аварийно-спасательных работ с помощью выносных и стационарных прожекторов, обеспечивают на месте пожара или аварии связь управления и информации.

Тактико-технические характеристики автомобиля технической службы связи и освещения ATCO-20 (375) (модель ПМ-114) приведены в табл. 6.8.

Таблица 6.8 Тактико-технические характеристики автомобиля технической службы связи и освещения ATCO-20 (375) (модель ПМ-114)

Тип шасси	Урал-375Е
Число мест для боевого расчета	7
Габаритные размеры, мм:	
- длина	7800
- ширина	2550
- высота	3200
Масса с полной нагрузкой, кг	13200
Наименьший радиус поворотам	10,5
Максимальная скорость, км/ч	75
Мощность двигателя, кВт (л.с.)	129(175)
Контрольный расход топлива, л/100 км	46
Емкость топливного бака, л	170
Запас хода по топливу, км	780
Кран грузоподъемный:	
- максимальный вылет стрелы относительно оси; вращения, мм	3400
- максимальная высота подъема крюка от земли, мм	4700
- грузоподъемность, кг	3000
- скорость подъема груза, м/мин	4
- время подъема стрелы из горизонтального положения на угол 45, с	60
- время подъема груза на высоту 4 м, с	60
- время поворота крана на 200°,	60
Генератор:	
- ТИП	OC71-42M101
- мощность, кВт	2,0
- напряжение, В	230
Прожекторы:	
- ТИП	ПКН-1500
- ЧИСЛО:	
- переносных	4
- стационарных	2
Мощность лампы прожектора, Вт	1500
Напряжение. В	230
Дальность телефонной связи, м	1000
Стационарные радиостанции, шт.	2

Пожарные автомобили технической службы предназначены для удаления дыма или подачи свежего воздуха в задымленные помещения, вскрытия строительных конструкций, разборки частей зданий и завалов, а также проведения аварийно-спасательных работ. Они доставляют к месту пожара боевые расчеты, специальное оборудование и инструмент.

Подразделения, вооруженные автомобилем технической службы, обеспечивают работу дымососа, до пяти пневматических инструментов (отбойные молотки, бетоноломы, пневмобуры), разбирают конструкции массой 2...3 т, производят резку металла с помощью ранцевою газореза-

тельного аппарата, разборку деревянных конструкций с помощью пил, освещают место пожара переносными прожекторами.

Тактико-технические характеристики пожарных автомобилей технической службы приведены в табл. 6.9.

Таблица 6.9 Тактико-технические характеристики пожарных автомобилей технической службы

Показатели	AT-(157K)	AT-3(131)
Тип шасси.	ЗИЛ-157К	ЗИЛ-131
Число мест для боевого расчета	3	3
Габаритные размеры, мм:		
- длина	17225	7345
- ширина	2300	2600
- высота	2600	3000
Масса с полной нагрузкой, кг	7540	10080
Наименьший радиус поворота ,м;	11,2	10,2
Максимальная скорость, км/ч	65	80
Мощность двигателя, кВт (л.с.)	80 (109)	110 (150)
Контрольный расход топлива, л/100 км	42	40
Компрессор:		
- марка	ЗИФ-55	ЗИФ-55
- подача, м/мин	5	5
- рабочее давление, МПа (кг/см ²)	0,7(7)	0,7(7)
Воздухосборник:		
- объем, м ³	0,23	0,23
- число точек для присоединения резиновых рукавов, шт.	5	5
Подъемный кран у косины:		
- грузоподъемность ,кг	2000	3000
- максимальная высота подъема крюка от земли, мм	3700	4780
- вылет стрелы от заднего бампера до крюка, мм	2000	4320
Число переносимых газоструйных дымососов, шт	1	1
Давления рабочего воздуха, МПа	0,7	0,7
Расход рабочего воздуха	5	5
Подача на выходе из диффузора	7000	7000
Емкость топливных баков, л	215	215

Пожарные автомобили технической службы, предполагаемые к выпуску, приведены в табл. 6.10.

Таблица 6.10 **Пожарные автомобили технической службы, предполагаемые к выпуску**

предполагаемые к выпуску				
Марка автомобиля		AOTC-16		
Тип шасси	ЗИЛ 4334	Урал-5557	КамАЗ-43101	
Область применения		Г, С, Х, Т, Ч, Л, Э		
Привод		П		
Полная масса, кг	10600	12000	14400	
Мощность двигателя, л. с.	170	180	220	
Число мест для боевого расчета		5		
Мощность V генератора, кВт		16		
Дополнительное оборудование		комплект		

Пожарные пеноподъемники, предполагаемые к выпуску, приведены в табл. 6.11.

Марка автомобиля	ППП-30
Тип шасси	КамАЗ (6х6)
Область применения	X
Привод	П
Полная масса, кг	14700
Мощность двигателя, л.с.	220
Число мест для боевого расчета	3
Количество ГПС-2000	5
Высота подъема, м	30

Пожарные водозащитные автомобили, предполагаемые к выпуску, приведены в табл. 6.12.

Таблица 6.12 Пожарные водозащитные автомобили, предполагаемые к выпуску

* ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	2 1 1 1		
Марка автомобиля	AB3-3,0-40		
Тип шасси	Урал-5557 КамАЗ-4 3		
Область применения	Γ, Σ	Х, Ч	
Привод		П	
Полная масса, кг	14000	14100	
Мощность двигателя, л.с.	210	220	
Число мест для боевого расчета	6	7	
Вместимость цистерны, м ³	3,15		
Подача насоса, л/с	40		
Мощность выносного генератора, кВт	4		
Аварийно спасательный инструмент	1		
Гидроэлеваторы, шт.	2		

Пожарные аварийно-спасательные автомобили, предполагаемые к выпуску, приведены в табл. 6.13.

Пожарные автомобили дымоудаления, предполагаемые к выпуску, приведены в табл. 6.14.

Автомобили отогрева пожарной техники, предполагаемые к выпуску, приведены в табл. 6.15.

Пожарные компрессорные станции, предполагаемые к выпуску, приведены в табл. 6.16.

Таблица 6.13 Пожарные аварийно-спасательные автомобили, предполагаемые к выпуску

Марка автомобиля	Тип шасси	Область применения	Привод	Полная масса, кг	Мощность двигателя, л.с.	Число мест для боевого расчета	
ACA-12	ГАЗ-2405	Г, Х, Т, Ч, Э	Н	3500	95	3	
	ЗИЛ-5301 ТО			6600	108,8		
ACA-16	3ИЛ-5301 СС	Г, Х, Т, Ч, Э	П	0000	100,0	4	
	ПАЗ-3205				7090	120	
	КамАЗ-42101			12000	180		
АСА-20 КамАЗ-	КамАЗ-4320	$ \mathbf{q}, \mathbf{n}, \mathbf{g}$		П	12500	210	3
	Урал-4320-01			13000	210		
ACA-16	ЗИЛ-432732	Г, Х, Т, Ч, Э	П	7250	108,8	5	

Окончание табл. 6.13

Марка автомобиля	Мощность встроенного генератора, кВт	Высота мачты, м	Мощность мотолебедки, кВт	Мотопомпа М-800	Аварийно спасательный инструмент	Грузоподъем ность крана. т	Мощность выносного генератора, кВт
ACA-12	12	4	3	-	1	-	_
ACA-16	16	6	3	1	1	_	_
ACA-20	20	6	3	1	1	5	4
ACA-16	16	7	3	1	1	3	4

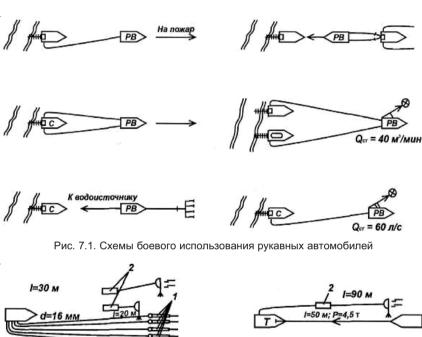
Таблица 6.14

Пожарные автомобили дымоудаления, предполагаемые к выпуску

110maphilie allowed and Almoj American, inpeditorial action in Spiniterial						
Марка автомобиля	АД-90		Ц -90 ДД-120			
Тип шасси	ГАЗ-3308	ЗИЛ-4333	ЗИЛ- 4334	Урал-1557		
Область применения	Г, Ч, Э		$\Gamma, \Psi, \mathfrak{I}$ $\Gamma,$		Γ, τ	ł,Э
Привод	П		I	I		
Полная масса, кг	6300	7250	13000	12000		
Мощность двигателя, л.с.	140	108,8	210	180		
Число мест для боевого расчета		•				
Производительность установки дымоудаления, м ³ /час	2 (3)			3		

Таблица 6.15 **Автомобили отогрева пожарной техники, предполагаемые к выпуск**у

Марка автомобиля	АОПТ-100				
Тип шасси	ЗИЛ-4334	Урал-5557	КамАЗ-43101		
Область применения	$\Gamma, C, X, T, \Psi, \Pi$				
Привод		Π			
Полная масса, кг	10600	12000	14400		
Мощность двигателя, л. с.	170	180	220		
Число мест для боевого расчета		3			
Тепловая мощность, Мкал		100			
Теплонагревательные установки:					
- стационарные	1				
- переносные	2				


Таблица 6.16

Пожарные компрессорные станции, предполагаемые к выпуску

Марка автомобиля	ПКС-100
Тип шасси	ЗИЛ-4334
Область применения	Γ , C , X , T , Y , Π , Θ
Привод	П
Полная масса, кг	10600
Мощность двигателя, л.с.	170
Рабочее давление, кг/см ²	400
Производительность, м ³ /час	0-115

7. ОСНОВНЫЕ СХЕМЫ БОЕВОГО РАЗВЕРТЫВАНИЯ НА СПЕЦИАЛЬНЫХ ПОЖАРНЫХ АВТОМОБИЛЯХ

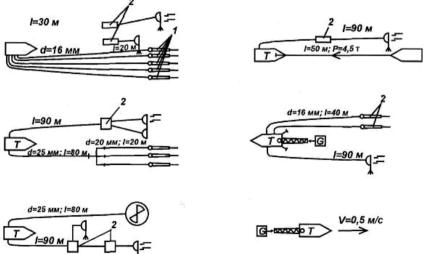


Рис. 7.2. Схемы боевого использования автомобилей технической службы: 1 — отбойный молоток или бетонолом, 2 — разветвительная коробка

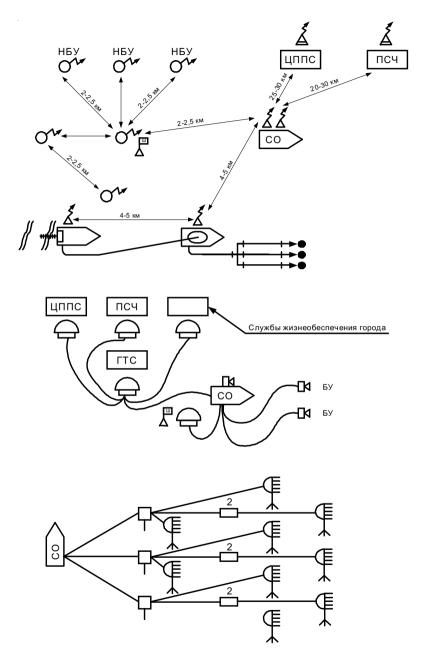


Рис. 7.3. Схемы боевого использования автомобилей связи и освещения (АСО)

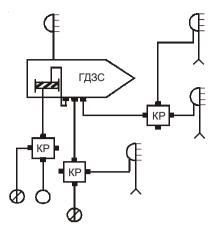


Схема №1 боевого развертывания

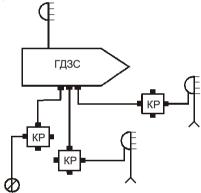


Схема №2 боевого развертывания

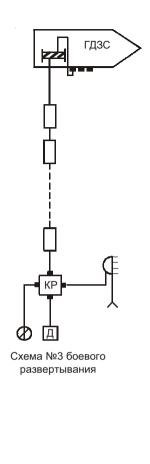


Рис. 7.4. Схемы боевого развертывания автомобилей газодымозащитной службы AГ-12 на шасси ПАЗ-3205

8. НОРМЫ УКОМПЛЕКТОВАННОСТИ СПЕЦИАЛЬНЫХ ПОЖАРНЫХ АВТОМОБИЛЕЙ ПОЖАРНО-ТЕХНИЧЕСКИМ ВООРУЖЕНИЕМ, ОБОРУДОВАНИЕМ И ИНВЕНТАРЕМ

Таблица 8.1 Нормы укомплектованности автолестницы АЛ-30(131) ПМ-506 пожарнотехническим вооружением, оборудованием и инвентарем

№ п/п изм. ко 1 Ствол лафетный шг. 2 Сменные насадки к лафетному стволу d=25x28 -"- 3 Веревка спасательная l=30 м, в чехле -"- 4 Веревка для управления лафетным стволом -"- 5 Растяжная веревка с катушкой компл. 6 Гребенка для-4-х ГПС-600; ГПС-2000 шт. 7 Лестница штурмовая -"- 8 ГПС-2000 -"- 9 Электрический индивидуальный фонарь типа ФЭП-И -"- 10 Огнетуппитель ОУ-5 или ОУ-2 -"- 11 Лопата штыковая -"- 12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов -"- 16 Комплект инструментов для резки эл. проводов -"- 17 Комплект инструментов для рез		темин теским вооружением, оборудованием и и		
2 Сменные насадки к лафетному стволу d=25x28 -"- 3 Веревка спасательная l=30 м, в чехле -"- 4 Веревка для управления лафетным стволом -"- 5 Растяжная веревка с катушкой компл. 6 Гребенка.для-4-х ГПС-600; ГПС-2000 шт. 7 Лестница штурмовая -"- 8 ГПС-2000 -"- 9 Электрический индивидуальный фонарь типа ФЭП-И -"- 10 Огнетушитель ОУ-5 или ОУ-2 -"- 11 Лопата штыковая -"- 12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект шоферского инструмента компл. 17 Комплект шоферского инструмента -"- 16 Комплект шоферского инструмента компл. 17 Комплект шоферского инструмента компл. 18 Колод	№ п/п	Наименование оборудования, вооружения и инвентаря	Ед. изм.	Количество
Веревка спасательная =30 м, в чехле -"-	1	Ствол лафетный	шт.	1
3 Веревка для управления лафетным стволом -"- 5 Растяжная веревка с катушкой компл. 6 Гребенка для-4-х ГПС-600; ГПС-2000 шт. 7 Лестница штурмовая -"- 8 ГПС-2000 -"- 9 Электрический индивидуальный фонарь типа ФЭП-И -"- 10 Огнетушитель ОУ-5 или ОУ-2 -"- 11 Лопата штыковая -"- 12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов -"- ящик или сумка -"- ножницы дуэлектрические -"- боты диэлектрические -"- коврик диэлектрические -"- коврик диэлектрические -"- коврик диэлектрические -"- 18 Колодка шт. 19 Авто	2	Сменные насадки к лафетному стволу d=25x28	-"-	2
5 Растяжная веревка с катушкой компл. 6 Гребенка.для-4-х ГПС-600; ГПС-2000 шт. 7 Лестница штурмовая -"- 8 ГПС-2000 -"- 9 Электрический индивидуальный фонарь типа ФЭП-И -"- 10 Огнетушитель ОУ-5 или ОУ-2 -"- 11 Лопата штыковая -"- 12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов -"- ящик или сумка -"- ножницы диэлектрические -"- боты диэлектрические -"- коврик диэлектрические -"- коврик диэлектрические -"- коврик диэлектрические -"- коврик диэлектрические -"- 18 Колодка шт. 19 Автомобильная радиостанция	3	Веревка спасательная 1=30 м, в чехле	-"-	1
6 Гребенка для 4-х ГПС-600; ГПС-2000 шт. 7 Лестница штурмовая -"- 8 ГПС-2000 -"- 9 Электрический индивидуальный фонарь типа ФЭП-И -"- 10 Огнетушитель ОУ-5 или ОУ-2 -"- 11 Лопата штыковая -"- 12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов -"- 3 перчатки диэлектрические -"- 4 -"- -"- 10 компл. -"- 11 Колодка шт. 12 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция	4	Веревка для управления лафетным стволом	1	
7 Лестница штурмовая -"- 8 ГПС-2000 -"- 9 Электрический индивидуальный фонарь типа ФЭП-И -"- 10 Огнетушитель ОУ-5 или ОУ-2 -"- 11 Лопата штыковая -"- 12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов -"- ящик или сумка -"- -"- ножницы диэлектрические -"- -"- боты диэлектрические -"- -"- коврик диэлектрические -"- -"- коврик диэлектрические -"- -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки	5	Растяжная веревка с катушкой	компл.	2
8 ГПС-2000 -"- 9 Электрический индивидуальный фонарь типа ФЭП-И -"- 10 Огнетушитель ОУ-5 или ОУ-2 -"- 11 Лопата штыковая -"- 12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов -"- ящик или сумка -"- ножницы диэлектрические -"- боты диэлектрические -"- коврик диэлектрические -"- коврик диэлектрический -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 м	6	Гребенка.для-4-х ГПС-600; ГПС-2000	шт.	1
9 Электрический индивидуальный фонарь типа ФЭП-И -"- 10 Огнетушитель ОУ-5 или ОУ-2 -"- 11 Лопата штыковая -"- 12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов -"- ящик или сумка -"- -"- ножницы диэлектрические -"- -"- боты диэлектрические -"- -"- коврик диэлектрические -"- -"- коврик диэлектрические -"- -"- коврик диэлектрические -"- -"- коврик диэлектрические -"- -"- 18 Колодка шгг. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанц	7	Лестница штурмовая	_"_	3
10 Огнетушитель ОУ-5 или ОУ-2	8	ГПС-2000	_"_	4
11 Лопата штыковая -"- 12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов ящик или сумка ножницы диэлектрические -"- 18 нерчатки диэлектрические -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-	9	Электрический индивидуальный фонарь типа ФЭП-И	_"_	1
12 Топор плотницкий -"- 13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов ящик или сумка ножницы диэлектрические г"- -"- 18 ножницы диэлектрические г"- -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-	10	Огнетушитель ОУ-5 или ОУ-2	_"_	1
13 Лом легкий -"- 14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов ящик или сумка ножницы диэлектрические г"- -"- 18 ножницы диэлектрические г"- -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-	11	Лопата штыковая	_"_	1
14 Ведро брезентовое -"- 15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов ящик или сумка ножницы диэлектрические перчатки диэлектрические г"- -"- 6оты диэлектрические коврик диэлектрический -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-	12	Топор плотницкий	_"_	1
15 Задержка рукавная -"- 16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов ящик или сумка ножницы диэлектрические перчатки диэлектрические г"- коврик диэлектрические г"- коврик диэлектрический г"- 18 Колодка штт. 19 Автомобильная радиостанция г"- 20 Медицинская аптечка г"- 21 Опись ПТВ г"- 22 Знак аварийной остановки г"- 23 Переносная радиостанция г"- 24 Ствол РСК-50 (РС-50) г"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм г"- 26 Разветвление 3-ходовое г"- 27 Натяжное спасательное полотно г"-	13	Лом легкий	_"_	1
16 Комплект шоферского инструмента компл. 17 Комплект инструментов для резки эл. проводов ящик или сумка ножницы диэлектрические перчатки диэлектрические боты диэлектрические г коврик диэлектрический г коврик диэлектрический г г. шт. 18 Колодка шт. г г г г г г г г г г	14	Ведро брезентовое	_"_	1
17 Комплект инструментов для резки эл. проводов ящик или сумка ножницы диэлектрические перчатки диэлектрические боты диэлектрические гиверчатки диэлектрические гиверчатки диэлектрический гиверчатки	15	Задержка рукавная	_"_	4
ящик или сумка -"- ножницы диэлектрические -"- перчатки диэлектрические -"- коврик диэлектрический -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-	16	Комплект шоферского инструмента	компл.	1
ножницы диэлектрические -"- перчатки диэлектрические -"- боты диэлектрические -"- коврик диэлектрический -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-	17	Комплект инструментов для резки эл. проводов	_"_	1
перчатки диэлектрические слеботы диэлектрические коврик диэлектрический слеботы диалектрический слеботы слеботы диалектрический слеботы слебо		ящик или сумка	-"-	1
боты диэлектрические коврик диэлектрический -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-		ножницы диэлектрические	-"-	1
коврик диэлектрический -"- 18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-		перчатки диэлектрические		1
18 Колодка шт. 19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-		боты диэлектрические		1
19 Автомобильная радиостанция -"- 20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-			_"-	1
20 Медицинская аптечка -"- 21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-				1
21 Опись ПТВ -"- 22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-		Автомобильная радиостанция		1
22 Знак аварийной остановки -"- 23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-				1
23 Переносная радиостанция -"- 24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-	21	Опись ПТВ		1
24 Ствол РСК-50 (РС-50) -"- 25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-	22	Знак аварийной остановки		1
25 Рукав напорный латексный, 1 = 20 м, d=51 мм -"- 26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-				1
26 Разветвление 3-ходовое -"- 27 Натяжное спасательное полотно -"-	24	Ствол РСК-50 (РС-50)		1
27 Натяжное спасательное полотно -"-	25	Рукав напорный латексный, l = 20 м, d=51 мм		3
27 Harakite elacarenbile hesterile	26	Разветвление 3-ходовое	-"-	1
20 17	27	Натяжное спасательное полотно	_"_	1
28 Пневматическое прыжковое спасательное устройство -"-	28	Пневматическое прыжковое спасательное устройство	-"-	1
29 Рукав спасательный секционный компл.	29	Рукав спасательный секционный	компл.	1

Таблица 8.2 Нормы укомплектованности автоподъемников "Бронто-лифт-330" на шасси автомобиля "СИСУ" и КамАЗ-53213 пожарно-техническим вооружением, оборудованием и инвентарем

Nº π/π	Наименование оборудования, вооружения и инвентаря	Ед. изм.	Количество
1	2	3	4
1	Универсальный лафетный ствол	ШТ.	1
2	Подставки под аутриггеры	_"_	4
3	Веревка спасательная в чехле 1=30 м	_"_	1
4	Лопата штыковая	_"_	2
5	Лом тяжелый	_"_	2
6	Кирка	_"_	2
7	Кабельная катушка с кабелем l=30 м	_''_	1
8	Гидромонитор для лафетного ствола	_''_	1
9	Пульт управления гидромонитором	_"_	1
10	Рукав напорный латексный $d=66$ мм, $l=20$ м	_"_	4
11	Рукав напорный латексный $d=77$, $l=20$ м	_''_	2
12	Ствол СА	_"_	1
13	Рукоятка гидронасоса ручного управления	_"_	1
	Огнетушитель ОУ-5	_"_	1
15	Лом универсальный	_"_	1
16	Прожектор 1000 Вт	пар	1
	Сапоги резиновые	шт.	2
18	Багор металлический	_"_	1
19	Трехходовое разветвление	_"_	1
20	Лестница-палка	_"_	1
21	Фонарь эл. пожарный индивидуальный (ФЭП-И)	_''_	1
22	Фонарь эл. пожарный групповой (ФЭИ-Г)	_"_	1
23	Лебедка с крюком и тросом I=30 м	компл.	1
24	Рукоятка ручного поворота стрелы башни	шт.	1
25	Большой пожарный топор	-"-	2
26	Лом-ледоруб	-"-	2
27	Комплект спасательного каната	компл.	1
28	Переходы: 66х77 мм, 66х51 мм	шт.	по 2
29	Шланг гидравлический для подключения ручного	-"-	1
	управления первым коленом		
30	Автомобильная радиостанция	-"-	1
31	Аптечка медицинская	компл.	1
32	Комплект шоферского инструмента	-"-	1
33	Опись ПТВ	-"-	1
34	Переносная радиостанция	-"-	1
35	Натяжное спасательное полотно	-"-	1
36	Пневматическое прыжковое спасательное устройство	-"-	1
37	Рукав спасательный секционный	компл.	1

Таблица 8.3 Нормы укомплектованности автомобиля связи на шасси ПАЗ-672

№ п/п	Наименование вооружения и оборудования	Ед. изм.	Количество
1	2	3	4
	Радиооборудование		
1	Автомобильная радиостанция УКВ	компл.	4
2	Переносная радиостанция УКВ	шт.	16
3	Звукоусилительная установка (осн.)	-"-	1
4	Микрофон выносной	-"-	2
5	Электромегафоны	-"-	3
6	Кабель для заземления	-"-	1
7	Радиопереговорное устройство	компл.	1
8	Звукоусилительная установка (рез)	шт.	1
9	Ретранслятор УКВ радиостанции	_''_	1
	Телефонное оборудование		
1	Коммутатор емк. до 10 номеров	шт.	1
2	Телефонный аппарат АТС	_"_	1
3	Полевые телефонные аппараты ТА-57	_''_	6
4	Микротелефонные трубки	_"_	2
5	Катушки с полевым телефонным кабелем (300 м)	_"_	10
6	Линейный щиток	шт.	1
7	Катушка с кабелем для штабного стола	_"_	i
	Электропитание		•
1	Компл. аккумуляторных батарей для питания р/с, ГТУ	шт.	5
2	Аккумуляторные батареи к переносной радиостанции	_"_	16
	Техническое вооружение		10
1	Веревка спасательная в чехле (30 м)	шт.	1
2	Аптечка медицинская	_"_	1
3	Фонарь ФЭП-Г	_"_	5
4			3
4	Сумка связного, с комплектом инструмента: кусачки боковые		1
	•	шт. _''_	1
	отвертка	_"_	1
	нож монтерский	_"_	
-	плоскогубцы		1 5
5	Резервный комплект боевой одежды (плащ прорезинен-	компл.	3
	ный, каска пожарная, пояс пожарный, сапоги резиновые)	۱	,
_	Костюм КР-1У	-"- -"-	1
6	Штабной стол с оборудованием		1
7	Вымпел "Штаб"	ЩТ.	1
8	Лампа освещения штабного стола	-"-	1
9	Ограждение штабного стола в чехле	-"-	1
10	Комплект для резки электропроводов:		
11	диэлектрические перчатки	пар	1
	диэлектрические боты	-"-	1
	диэлектрический коврик	ШТ	1
	ножницы для резки электрических проводов	-"-	1
12	Топор плотницкий	-"-	1
13	Лопата штыковая	-"-	1
14	Пила-ножовка по дереву в чехле	-"-	1
15	Огнетушитель ОУ-2	-"-	1
16	Огнетушитель ОУ-5	-"-	1
17	Комплект шоферскою инструмента	компл.	1

1	2	3	4
	Оперативная документация и канцпринадлеж	ности	
1	Справочник администрации	шт.	1
2	Справочник УВД	компл.	1
3	Планшет водоисточников	-"-	1
4	Телефонный справочник	-"-	1
5	Сборник инструкций взаимодействий подразделений		
	пожарной охраны с министерствами, ведомствами и		
	аварийными спецслужбами города		
6	Журнал выдачи НТВ, снаряжения и средств связи	_"_	1
7	Выписка радиопозывных гарнизона	-"-	1
8	Папка с зажимом	-"-	3
9	Планшеты из пластика	-"-	5
10	Канцпринадлежности (офицерская линейка — 1 шт.,	компл.	1
	линейка 25 и 50 см — 2 шт., ручка шариковая — 2 шт.,		
	карандаши простые и цветные — 1 компл.)		
11	Опись ПТВ	шт.	1

Таблица 8.4 Нормы укомплектованности автомобиля связи и освещения ACO-12/66/-90A

Nº п/п	Наименование вооружения и оборудования	Ед. изм.	Количество
1	2	3	4
	Телефонное оборудование		
1	Телефонный коммутатор АТС на 10 номеров	шт.	1
2	Телефонный аппарат TÂ-68	-"-	2
3	Полевой телефонный аппарат ТА-57	-"-	4
4	Катушка с телефонным кабелем 300 м	-"-	5
	Радиооборудование		
1	Радиостанция автомобильная	шт.	2
2	Радиостанция носимая	_''_	4
3	Громкоговорительная установка	_''_	1
4	Микрофон выносной	-"-	1
5	Катушка с кабелем для выносного микрофона 50 м	-"-	1
6	Динамик Р-10	-"-	2
_7	Ретранслятор УКР радиостанции	_"_	1
	Средства освещения		
1	Генератор переменного тока	шт.	1
2	Щит распределительный силовой в сборе	_"_	1
3	Прожектор стационарный ПКН-1500	_"-	1
4	Прожектор переносной	-"-	4
5	Фонарь ФЭП-Г	-"-	2
6	Катушка с осветительным кабелем 30 м	_"_	12
7	Кабель для городской сети	_''-	1
8	Распределительные коробки	-"-	2
9	Флагшток	_"_	1
	Техническое вооружение и оборудование		
1	Огнетушитель ОУ-2	шт.	1
2	Шесты для подвески кабеля	-"-	4
3	Ножницы для резки электропроводов	-"-	1
4	Коврик диэлектрический	-"-	1
5	Боты диэлектрические	пар	5
6	Перчатки диэлектрические	_''_	5

		OROTI Idilli	0 10071. 0. 1
1	2	3	4
7	Сапоги резиновые	пар	5
8	Стол штабной стационарный	шт.	1
9	Стол штабной переносной с оборудованием	компл.	1
10	Пила-ножовка по дереву	шт.	1
11	Пила-ножовка по металлу	-"-	1
12	Топор плотницкий	-"-	1
13	Лестница-палка	-"-	1
14	Спасательная веревка	-"-	2
15	Пояс монтерский	-"-	1
16	Когти монтерские	-"-	1
17	Сумка монтерская с комплектом инструмента (кусачки	-"-	1
	боковые — 1 шт., плоскогубцы — 1 шт., отвертка — 1 шт.,		
	микротелефонная трубка, нож монтерский — 1 шт.)		
18	Лом легкий	-"-	1
19	Лопата штыковая	-"-	1
20	Кувалда	-"-	1
21	Аптечка медицинская	-"-	1
22	Электродымосос	-"-	1
23	Электродольбежник	-"-	1
24	Часы	-"-	1
25	Опись ПТВ	-"-	1
	Прицепная автономная осветительная установка "Жираф"	фирмы "Пол	ума"
1	Прожектор выносной 1500	шт.	3
2	Прожектор стационарный 1500	_"_	5
3	Катушка с кабелем 1 = 50 м	_"_	2
4	Огнетушитель порошковый	_"_	1
5	Противопожарный упор	_"_	2
6	Подставка-тренога для выносных прожекторов	_"_	2 3
7	Заземляющее устройство	_"_	1

Таблица 8.5 **Нормы укомплектованности автомобилей газодымозащитной службы**

№ п/п	Наименование вооружения и оборудования	Ед.	Количес			
Nº 11/11	паименование вооружения и ооорудования	изм. AГ-12 AГ-24 3 4 5		ПАЗ-672		
1	2	3	4	6		
1	Кислородные изолирующие противогазы или	шт.	9	9	9	
	воздушные аппараты					
2	Кислородный баллон запасной	='	14	18	18	
3	Регенеративный патрон запасной	_"-	14	18	18	
4	Комплект инструмента для проверки и обслуживания КИП-8 (Р-30)	компл.	1	1	1	
5	Реометр-манометр	шт.	1	1	1	
6	Пробка для проверки КИП	=¦	1	1	1	
7	Ключ гаечный 24х27 для замены	-"-	3	3	3	
	кислородных баллончиков					
- 8	Ключ для замены регенеративных патронов	-"-	3	3	3	
9	Дымосос пожарный с электроприводом ДПЭ-70(10)	-"-	1	2	1	
10	Дымосос пожарный ДПМ-7	-"-	1	2	1	
11	Рукав мягкий для дымососа	ε',	1	1 2 2		
12	Рукав жесткий спиральный для дымососа 1=4	-"-	1 2 2		2	
	M					

Продолжение табл. 8.5

		пжение	табл. 8.5		
1	2	3	4	5	6
13	Пенообразующая приставка к дымососу	_"_	1	1	1
14	Электропила "Парма"	_"_	2	2	2
15	Запасная цепь к электропиле	_"_	1	1	1
16	УКМ-4	компл.	1	1	1
18	Запасные корундовые диски	_"_	3	3	3
19	Электродолбежник	1	1	_	1
20	Электромолоток ИЭ-4211	-"-	-	1	_
21	Прожектор ПКН-1500:				
	стационарный	1	1	2	1
	выносной	1	4	3	2
22	Лампы запасные к прожекторам		3	3	3
23	Коробка разветвительная (переходная)		2	2	
24	Электрокабель				
	стационарный 1 = 100 м	-"-	1	_	1
	переносной 1=50 м на катушке	-"-	2	8	6
	переносной 1 = 25 м на катушке	-"-	_	_	6
25	Ножницы гидравлические для резки металли-	-"-	1	1	1
	ческой арматуры				
26	Веревка спасательная 1=30 м с чехлом	компл.	3	3	4
27	Переговорное устройство		1	1	1
28	Комплект для резки электропроводов:				
	брезентовая сумка	ШТ	1		
	ножницы с диэлектрическими рукоятками	_"_	1		
	перчатки диэлектрические	пар	1		
	боты диэлектрические	_"_	1		
	коврик диэлектрический	ШТ	1		
29	Шест для поднятия электрокабеля	ШТ		1	1
30	Провод для заземления 1=25 м со струбциной	ШТ	1	_	1
31	Электрофонарь индивидуальный	ШТ	6	6	6
32	Электрофонарь групповой	ШТ	2	3	3
33	Теплоотражательный костюм	компл.	6	6	6
34	Костюмы защитные Л-1 или КР-1У	ШТ.	5	5	5
35	Перчатки резиновые диэлектрические	_"_	6	8	6
36	Сапоги резиновые	_"_	7	8	5
37	Очки защитные темные	шт.	5	5	5
38	Брезентовая перемычка на раздвижных мета-	_"_	2	2	2
50	ллических стройках.		_	_	
20	1	_"_	2	1	2
39	Лом универсальный	_"_	2	2	2
40	Лом легкий	_"-	2	4	2
41	Лом тяжелый		1	-	1
42	Крюк пожарный легкий	_"_	3	3	2
43	Пила-ножовка по металлу	-"-	1	1	
44	Запасное полотно к ножовке по металлу	-"-	6	6	6
45	Пила-ножовка по дереву	_"_	1	1	1
46	Пила поперечная в футляре	_"_	1	1	1
47	Топор плотницкий	_"_	1	1	1
48	Лопата; штыковая	_"_	1	1	1
49	Лопата, штыковая Лестница-палка	_"_	1	1	1
50		_"_	1	1	1
30	Лестница штурмовая		1	1	I

Окончание табл. 8.5

1	2	3	4	5	6
51	Багор	-"-	1	1	1
52	Напорный рукав l=20 м, d=51 мм	-"-	3	3	3
53	Ствол КРБ	-"-	1	1	1
54	Переходное соединение 51х66	-"-	1	1	1
55	Переходное соединение 51х51 (Ротт-Богдан)	-"-	1	1	1
56	Кувалда кузнечная	-"-	1	_	_
57	Громкоговорящая установка ГУ-20М	-"-	1	1	_
58	Гаечный ключ № 3	-"-	1	1	1
59	Путевой шпагат	_"-	1	1	1
60	Сцепка	_"_	2	2	2
61	Планшет	_"_	1	1	1
62	Радиостанция автомобильная	_"_	1	1	1
63	Радиостанция носимая	_"_	5	5	5
64	Носилки санитарные	-"-	1	1	1
65	Аптечка медицинская с медикаментами	компл.	1	1	1
66	Порошковый огнетушитель ОП-5 (10)	шт.	2	2	2
67	Огнетушитель ОУ-5	-"-	2	2	2
68	Ведро брезентовое	-"-	1	1	1
69	Комплект шоферского инструмента	компл.	1	1	1
70	Знак аварийной остановки	шт.	1	1	1
71	Опись ПТВ	-"-	1	1	1
72	Канатно-спусковое спасательное устройство	-"-	2	3	3
73	Натяжное спасательное полотно	_"-	1	1	1
74	Пневматическое прыжковое устройство	_"-	1	1	1
75	Гидравлический спасательный инструмент	компл.	1	1	1

Таблица 8.6

Нормы укомплектованности рукавного автомобиля АР-2 (131), модель 133

	F J	. ,, .	
Nº ⊓/⊓	Наименование вооружения и оборудования	Ед. изм.	Количество
1	Рукав напорный латексный 1= 20 м, D= 150 мм	шт.	67
2	Гайка переходная с накидной муфтой и быстросмы- кающейся гайкой 150х150	-"-	1
3	Гайка переходная с наружной резьбой и быстросмы- кающейся гайкой 150х150	-"-	1
4	Переходник 150х77х77	-"-	2
5	Мостки рукавные	пар	2
6	Зажим рукавный	шт.	3
7	Лампа паяльная	-"-	1
8	Электрический фонарь индивидуальный ФЭП-И	-"-	1
9	Топор плотницкий	-"-	1
10	Аптечка медицинская	компл.	1
11	Ключ для соединения напорных рукавов	шт.	4
12	Четырех ходовое разветвление 150х77х77х77х77	-"-	2
13	Головка соединительная переходная 77х66	-"-	4
14	Лопата штыковая	-"-	1
15	Огнетушитель ОУ-5 или ОУ-2	-"-	1
16	Комплект шоферского инструмента	компл.	1
17	Автомобильная радиостанция	шт.	1
18	Опись ПТВ	_"_	1

Таблица 8.7 Нормы укомплектованности автомобиля дымоудадения на шасси ЗИЛ-130

Nº п/п	Наименование вооружения и оборудования	Ед. изм.	Количество
1	Рукава выкидные, мягкие, d=800 мм, l=10 м	шт.	4
2	Рукав всасывающий d=800 мм, 1=3 м	_"_	1
3	Рукав напорный латексный, d=66 мм, l=20 м	_"_	2
4	Штанга для всасывающего рукава	_"_	3
5	Штанги для брезентовой перемычки	_"_	12
6	Перемычка брезентовая	_"_	2
7	Приставка пеногенераторная	_"_	2
8	Лом легкий	_"_	1
9	Лопата штыковая	-"-	1
10	Фонарь электрический индивидуальный ФЭП-И	_''_	3
11	Фонарь электрический групповой ФЭП-Г	_"_	2
12	Веревка спасательная 1 = 30 м в чехле (сумке)	-"-	2
13	Аптечка медицинская	компл.	1
14	Огнетушитель ОУ-2 (ОУ-5)	шт.	1
15	Сапоги резиновые	пар	3
16	Ножницы для резки металлической арматуры	шт.	1
17	Комплект шоферского инструмента	компл.	1
18	Автомобильная радиостанция	шт.	1
19	Переносная радиостанция	-"-	2
20	Опись ПТВ	-"-	1

9. ОСНОВНЫЕ ПАРАМЕТРЫ, ВЛИЯЮЩИЕ НА ВРЕМЯ БОЕВОГО РАЗВЕРТЫВАНИЯ

Таблица 9.1

Коэффициент, учитывающий влияние температуры окружающей среды, Kt							
Температура окружающей среды, °С	0-(+25)	30	35	40	50	60	
Kt	1,0	1,1	1,2	1,3	1,4	1,45	

Таблица 9.2

	Коэффициент, учитывающий влияние уклона местности, +Кп, -Ку										
Угол, град.	0	5	10	15	20	25	30	40	50	60	70
+K	1,0	1,2	1,7	2,0	2,4	2,8	3,1	3,8	4,5	5,3	6,0
-К	1,0	0,7	1,0	1,3	1,7	2,0	2,3	2,9	3,6	4,4	5,1

Таблица 9.3

	Коэффициент, учитывающий влияние возраста, Кв						
Возраст, лет	До 30	30-40	40-50	50			
Кв	1,0	1,1	1,2	1,35			

При выполнении группового упражнения Кв принимается для среднего возраста пожарных, выполняющих его.

Таблица 9.4

Коэффициент, учитывающий время суток, Кт

	Светное время	Ночное время			
Время суток	Светлое время суток	Без освещения	При уличном (лунном) освещении		
Кт	1	1,6	1,1		

Таблица 9.5

Коэффициент, учитывающий покрытие участка местности, Км

	· · · · · · · · · · · · · · · · · · ·	·· · · · · · · · · · · · · · · · · · ·
Покрытие участка	Bp	емя года
местности	лето	зима
Грунтовое	1,1	_
Асфальтовое	1,0	1,1
Утрамбованный снег	=	1,2

Таблица 9.6

Коэффициент, учитывающий влияние снежного покрова, Кс Толшина снежного 5 10 20 30 40 50 60 70 80 90 покрова, СМ Кс 1.25 1.5 1.8 2.2 2.6 3.2 3.9 5.0 6.9

Таблица 9.7 Математические зависимости для определения продолжительности передвижения пожарных в различных условиях, без средств защиты, с

	, , , , , , , , , , , , , , , , , , , ,	, , .
Условия	Математическая зависимость	Граничные условия
Передвижение по горизонтальной поверхности	$\tau = 0.34L - 0.1P+ + 0.0036L*P - 15$	$100 M \le L \le 1000 M$ $0 \le P \le 38 KF$
При подъеме в этажи зданий без средств защиты по лестничной клетки	$\tau = 2H + P + 0.03H^2 - 0.03P^2 - 0.038PH - 2.5$	3 ≤ H ≤ 75 м 0 ≤ P ≤ 38 кг
При спуске с этажей здания без средств защиты по лестничной клетки	$\tau = 7.4 + 1.05H + 0.45P + 0.01H^2 - 0.011P^2 + 0.02HP$	$3 \le H \le 75 \mathrm{M}$ $0 \le P \le 38 \mathrm{kr}$

где L — расстояние передвижения, м;

Р — масса переносимого ПТВ, кг;

Н — высота подъема (спуска) в этажах здания, м.

Таблица 9.8 Время преодоления 1 м (днем, летом, возраст до 30 лет) без средств защиты, с

Hamayaya*		ьтированном местности	По маршам лестничной клетк на 1 м высоты здания			
Нагрузка*	_	Δτ	спуск		подъем	
	τ	Δτ	τ	Δτ	τ	Δτ
В боевой одежде и снаряжении без ПТВ	0,2	0,03	1,6	0,2	3,2	0,3
С одним НПР диаметром:						
51 мм	0,22	0,02	1,9	0,2	3,4	0,3
66мм	0,24	0,02	2,0	0,2	3,6	0,3
77мм	0,26	0,03	2,2	0,2	3,8	0,4
С двумя НПР диаметром:						
51 мм	0,25	0,024	2,2	0,2	3,8	0,4
66 мм	0,29	0,03	2,6	0,3	4,1	0,4
77 мм	0,33	0,034	3,0	0,35	4,5	0,5

*-Переноска рукавного разветвления или одного всасывающего рукава приравнивается к одному рукаву диаметром 51 мм, переноска пожарной колонки, к двум рукавам диаметром 51 мм, переноска лафетного ствола к двум рукавам диаметром 77 мм.

Время движения воды принимать 5с на каждый рукав одной магистральной и одной рабочей линии.

Таблица 9.9 Параметры при тушении пожаров в тоннельных сооружениях

Вид боевой работы	Параметры боевой работы	Значение параметра, м/мин
Боевое развертывание в тоннельных сооружениях	Скорость боевого развертывания	25
Боевое развертывание в тоннельных сооружениях через ствол вентиляционной шахты	Скорость боевого развертывания	6
Передвижение звена ГДЗС (4 чел.) по тоннелю в СИЗОД при переносе пострадавшего	Скорость передвижения	30
Передвижение по тоннелю со скаткой рукав диаметром 77 мм	Скорость передвижения	50
Передвижение по путевым туннелям без нагрузки	Скорость передвижения	55-60

Масса пожарно-технического вооружения, кг

тасса пожарно-технического вооружения, кі	
Наименование пожарно-технического вооружения	Масса, кг
Теплоотражательный костюм ТК-800	17
Поясной металлический топор	1,7
Фонарь электрический пожарный:	1,7
- индивидуальный ФЭИ-4	2,8
- групповой ФЭП-Г	7.6
Багор пожарный:	1,0
- металлический БПМ	5
- насалной БПН	2
	+
Лом пожарный: - тяжелый ЛПТ	6,7
- тяжелый ЛПП - легкий ЛПЛ	4,5
- легкий литл - универсальный ЛПУ	1,8
- универсальный литу Отбойный молоток MO-10	10
	12
Всасывающий рукав с арматурой: длиной 4 м, внутренний диаметр 65 мм	14
- длиной 4 м, внутренний диаметр 75мм	21
- длиной 4 м, внутренний диаметр 100мм	
- длиной 4 м, внутренний диаметр 125мм	30
- длиной 2 м, внутренний диаметр 150мм	38
Напорные рукава, прорезиненные, длина 20 м, диаметром:	11.6
- 51mm	11,6
- 66мм	14,4
- 77mm	17
- 89mm	21,2
- 150мм	36
Напорные рукава латексные, длина 20 м, диаметром:	6.9
- 51мм	6,8
- 66мм	8,8 10.8
- 77MM	10,8
Всасывающая сетка: - СВ-80	2.0
- CB-80 - CB-100	2,9
- CB-100 - CB-125	4,7
	6,4
- CB-150	8,2
Пожарное разветвление: - PT-70	5,5
- PT-80	6,5
- PT-150	15
Ручной пожарный ствол:	13
- PC-50	1
- PC-30 - PC-70	_
	1,8
- PCK-50	2,2
Переносной лафетный ствол ПЛС-20П	27
Колонка пожарная	18
Лестницы:	10.5
-палка	10,5
-штурмовая	10
-трехколенная выдвижная Л-ЗК	58
-трехколенная металлическая Л-60	45

1	2
Кислородные изолирующие противогазы:	
- КИП-8	10
- RM1-0 - PBЛ-1	8,3
- P-12	14
Воздушные средства индивидуальной защиты органов дыхани	
	22
- Украина-2 - Влада-2	15
- влада-2 - ACB-2	15
- ACB-2 - ЛАНА-20	12
Переносной дымосос с комплектом шлангов, перемычек, напорных и вс	асывающих
рукавов:	1 02
- ДПМ-7	92
- ДПЭ-7	82
Гидроэлеватор Г-600А	5,6
Пеносмеситель:	
-ПС-1	4,5
-ПС-2	5,5
-ПС-3	6,0
Огнетушители:	
-ручной химически-пенный OXП-10	14
-ручной химически-воздушно-пенный ОХВП-13	13
-ручной воздушно-пенный ОВП-5	10
Углекислотные огнетушители:	
-OV	6,2
-OY-2A	7
-OY-5	13
Порошковые огнетушители:	
-ОП-2	2
-ОП-5	5
-OΠ-10	10

Время открепления и снятия ПТВ, с

Таблица 9.11

	bean original in charm it b, c	·	
Операция	Вид ПТВ	τ	Δτ
1	2	3	4
Открыть дверг	цу пожарного автомобиля	1,2	0,1
Открепить:	Напорный прорезиненный рукав	1,2	0,1
	Пожарную колонку	2,0	0,16
	Водосборник	2,0	0,16
	Всасывающую сетку	2,5	0,16
	Всасывающий рукав	1,7	0,160
	Ручные стволы, КИПы	1,1	0,11
	Лафетный ствол	2,8	0,16
	Штурмовую, выдвижную лестницы	1,3	0,1
	Трехходовое разветвление	2,2	0,1
Снять:	Лафетный ствол	4,0	0,45
	Ствол Б, А, ГПС-600, ГПС-200	1,5	0,13
	Крюк для открывания гидранта	1,2	0,08
	Напорный прорезиненный рукав		
	диаметром 51, 66, 77 мм	1,5	0,1
	Напорно-всасывающий рукав	5,0	0,18

1	2	3	4
Лес	стницу штурмовую	4,0	0,4
Лес	тницу выдвижную	5,0	0,45
Лес	стницу-палку	1,0	0,1
Ко.	лонку пожарную	4,0	0,4
Box	досборник	2,7	0,13
КИ	ІП-8	1,0	0,03
Pas	вветвление	1,4	0,16
Bca	сывающую сетку	2,6	0,13
Γ-6	00	2,2	0,2
Рун	кавную катушку	5,0	0,2
Кл	ючи	2,0	0,2
Подняться на кры	шу пожарной машины	3,2	0,15
	и пожарной машины	3,0	0,1

Таблица 9.12 Время выполнения операций с пожарно-техническим вооружением, с

№ п/п	Операции	τ	Δτ
1	Раскатать напорный пожарный рукав диаметром		
	51-77 мм на горизонтальной поверхности:		
	одинарная скатка (для НПР-51)	4,0	0,35
	двойная скатка (для НПР-77)	7,0	0,57
2	Соединить напорные соединительные головки диаметром 51-77 мм	1,5	0,16
3	Соединить напорные соединительные головки всасывающих		
	рукавов диаметром:		
	77 мм	4,0	0,48
	(нерезьбовые) 125-150 мм	6,0	0,8
4	Установить колонку на гидрант	9,0	1,0
5	Открыть крышку гидранта	2,0	0,2
6	Открыть колпачок гидранта	2,0	0,2
7	Подать воду в колонку	13,0	0,54
8	Открыть вентиль колонки	8,0	0,5
9	Переместиться с рукавной катушкой на расстояние 100м:		
	без раскатки рукавов	35,0	1,3
	с раскаткой рукавов	40,0	1,4
10	Раскатать напорные рукава диаметром 51-66 мм по лестничному	12,0	1,2
	маршу лестничной клетки		
11	Закрепить напорный пожарный рукав	2,0	0,3
12	Опустить спасательную веревку на 1 м	0,3	0,03
13	Опустить (поднять) напорные рукава в этажах зданий на 1 м	2,0	0,08
14	Размотать веревку на всасывающей сетке	10,0	1,0

Таблица 9.13 Время пребывания людей в зоне теплового воздействия при тушении пожара, мин

Температура, °С	Время пребывания				
температура, С	безопасно	допустимо	предельно допустимо		
40	240	300	360		
50	30	60	90		
60	20	40	60		
70	10	20	35		

10. ОСНОВНЫЕ ПАРАМЕТРЫ ПОЖАРА

Таблица 10.1 Расход воздуха и удельный объем продуктов сгорания при горении некоторых веществ и материалов (при 0°С и нормальном давлении)

вещееть и матер	Расход воздуха для	Удельный объем	Усредненный
Горючий материал (вещество)	полного сгорания,	продуктов сгорания,	коэффициент
	м³ /кг	м³ /кг	химического недожога
1	2	3	4
Акриловая кислота	4,44	5,08	0,97
Амилацетат	7,80	8,56	0,93
Амиловый спирт	9,10	10,00	0,93
Аммиак	4,70	5,68	0,97
Анилин	8,90	9,34	0,93
Ацетилен	10,25	10,70	0,85
Ацетон	7,35	8,14	0,93
Бензин	11,60	12,35	0,85
Бензол	10,25	10,70	0,85
Битум	9,45	10,39	0,93
Бумага	3,95	4,64	0,97
Бутан	11,34	12,91	0,85
Бутилацетат	7,35	8,14	0,93
Бутиловый спирт	8,64	9,52	0,93
Водород	26,60	32,20	0,85
Гексан	11,79	12,71	0,85
Глицерин	4,06	4,90	0,97
Дизельное топливо	11,50	11,95	0,85
Диэтиловый эфир	8,65	9,55	0,93
Древесина при влажности, %	,	,	,
10	4,20	4,86	0,97
20	3,74	4,42	0,97
30	3,54	3,99	0,97
Капролактам	7,76	8,54	0,93
Каучук натуральный	10,0	10,76	0,85
Каучук синтетический СК	10,16	10,82	0,85
Керосин	11,36	12,29	0,85
Кинопленка:	11,50	12,25	0,03
нитроцеллюлозная	3,62	4,32	0,97
триацетатная	4,34	4,97	0,97
Мазут	11,30	11,85	0,85
Метан	13,32	14,72	0,85
Метиловый спирт	4,99	6,06	0,97
Нефть	11,80	11,86	0,85
Пентан	11,85	12,78	0,85
Полистирол	10,25	10,68	0,85
*	11,42	12,22	0,85
Полипропилен		12,22	0,85
Полиэтилен	11,42 6,00	6,55	0,83
Пенополиуретан			
Скипидар	10,96	11,63	0,85
Стирол	11,85	10,68	0,85
Толуол	10,46	11,94	0,85

1	2	3	4
Торф при влажности, %			
10	5,01	5,66	0,93
20	4,54	5,14	0,97
30	3,96	4,62	0,97
Хлопок и изделия из него	3,95	4,64	0,97
Этиловый спирт	6,95	7,94	0,93
Этиленгликоль	4,16	5,06	0,97

Таблица 10.2

Средняя скорость выгорания некоторых твердых материалов

Горючий материал	Скорость выгорания, кг/(м ³ мин)	Теплота сгорания, кДж/кг
Бумага разрыхленная	0,636	13400
Волокно штапельное разрыхленное	0,54	13800
Древесина в изделиях (пиломатериалы, высотой слоя 4-8м, при плотности укладки 0,2-0,3 и влажности 12-14%)	6,40	16600
Карболитовые изделия	0,38	24,900
Каучук: синтетический натуральный	0,72 1,08	40200 42300
Книги на стеллажах	0,438	13400
Органическое стекло	1,14	25100
Пенополиуретан	0,90	24300
Полистирол	1,14	39000
Полипропилен (в изделиях)	0,87	45600
Полиэтилен (в изделиях)	0,62	47100
Резинотехнические изделия	0,90	33500
Торфоплиты в штабелях (влажность 9-12%)	0,318	_
Торф в караванах (влажность 40%)	0,24	11300
Фенопласты	0,48	_
Хлопок разрыхленный	0,318	15700

Таблица 10.3

Средняя скорость выгорания некоторых жидкостей в резервуарах

- Средний спор	DENOPE.	Скорость	ил индиостен в	peocpayapaar	
Жидкость	выгорания		прогрева слоя,	Теплота сгорания, кДж/кг	
	кг/(м ³ мин)	см/мин	см/мин		
Амиловый спирт	1,05	0,13	_	39000	
Ацетон	2,832	0,33	_	20000	
Бензол	2,298	0,50	_	40900	
Бензин	2,93	0,50	1,20	41900	
Бутиловый спирт	0,81	0,11	<u> </u>	36200	
Диэтиловый эфир	3,60	0,50	0,57	33500	
Дизельное топливо	3,30	0,33	_	43000	
Керосин	2,298	0,40	_	43500	
Мазут	2,10	0,17	0,50	39800	
Метиловый спирт	0,96	0,12	0,55	22700	
Нефть	1,20	0,23	0,50	41900	
Сероуглерод	2,22	0,17	_	14100	
Толуол	2,298	0,33	_	41000	
Этиловый спирт	1,80	0,25	_	27200	

Таблица 10.4 Ориентировочная температура пожара при горении различных материалов

1 1 11		
Горючие материалы	Пожарная нагрузка, кг/м ³	Температура пожара, °С
Бумага разрыхленная	25	370
То же	50	510
Древесина сосновая в ограждениях	25	830
То же	50	900
То же	100	1000
на открытой площадке в штабелях	600	1300
Карболитовые изделия	25	530
То же	50	640
Каменный уголь, брикеты	_	до 1200
Калий металлический	_	700
Каучук натуральный	50	1200
Магний, электрон	_	до 1200
Натрий металлический	_	860
Органическое стекло	25	1115
Полистирол	25	1100
То же	50	1350
Текстолит	25	700
То же	50	850
Хлопок разрыхленный	50	310

Таблица 10.5 Температура пламени при горении некоторых веществ и материалов

Вещество и материал	Температура пламени, °С
Ацетилен (в кислороде)	3100-3300
Ацетилен (в воздухе)	2150-2200
Водород	2130
Газонефтяной фонтан	до 1100
Древесина в различных агрегатных состояниях	700-1000
Спирт	900-1200
Стеарин	640-940
Термит	3000
Торф	770-790
Метан	1950
Нефть и нефтепродукты в резервуарах	1100-1300
Парафин	1430
Cepa	1820
Сероуглерод	2195
Целлулоид	1100-1300
Электрон, магний	около 3000

Температура плавления различных веществ

Вещество	Температура плавления, °С	Вещество	Температура плавления, °С
Алюминий, магний и их сплавы	600-660	Цинк	419
Баббит	350	Парафин	38-56
Бронза	900	Платина	1800
Воск пчелиный	61-64	Хлорин	90-130
Глина огнеупорная	1580	Полиуретан	180
Диабаз	1000	Cepa	115
Диатомовый кирпич	900	Серебро	960
Золото	1063	Свинец	327
Каучук	125	Сода	853
Кварц	1700	Соль поваренная	800
Латунь	940	Сталь	1400
Медь и медные сплавы	900-1100	Стеарин	69
Нафталин	80	Стекло	800-1200
Нейлон, лавсан	250	Слюда	110
Никель	1455	Фарфор	1530
Олово	282	Чугун	1050-1200

Таблица 10.7

Ориентировочные значения температур, соответствующие цвету нагретых тел

- P	
Цвет нагретых тел	Температура °C
Красный едва видимый	550
Темно красный	700
Вишнево-красный	900
Оранжевый	1100
Белый	1400

Таблица 10.8

Основные параметры горения твердых горючих веществ и материалов

Наименование Массовая скорость выгорания, кг/(м мин) Линейная; скорость распространения, мини Низшая теплота сгорания, плотность теплового потока, кВт/м² Критическая плотность теплового потока, кВт/м² Бумага 0,64 0,5-1 13,4 12-18 Книги 0,25 0,5-1 13,4 15 Кожа 0,35 0,9 21 20 Волокно штапельное 0,4 0,8 14 20-30 Войлок строительный 0,2 0,7 19 Древесина сосновая 0,9 1-2 14 21 ДВП 0,8 1,7 21 25 ДСП 0,4 1,5 18 80 Карболитовые изделия 0,2-0,4 26 45 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10 Линолеум 0,6 18-27	• •	•			•
Бумага 0,64 0,5-1 13,4 12-18 Книги 0,25 0,5-1 13,4 15 Кожа 0,35 0,9 21 20 Волокно штапельное 0,4 0,8 14 20-30 Войлок строительный 0,2 0,7 19 Древесина сосновая 0,9 1-2 14 21 ДВП 0,8 1,7 21 25 ДСП 0,4 1,5 18 Бумажно-слоистый пластик 0,5-0,8 1,5-2 18 80 Карболитовые изделия 0,2-0,4 26 45 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Наименование	скорость выгорания,	скорость распространения,	сгорания,	плотность теплового
Книги 0,25 0,5-1 13,4 15 Кожа 0,35 0,9 21 20 Волокно штапельное 0,4 0,8 14 20-30 Войлок строительный 0,2 0,7 19 Древесина сосновая 0,9 1-2 14 21 ДВП 0,8 1,7 21 25 ДСП 0,4 1,5 18 Бумажно-слоистый пластик 0,5-0,8 1,5-2 18 80 Карболитовые изделия 0,2-0,4 26 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	1	2	3	4	5
Кожа 0,35 0,9 21 20 Волокно штапельное 0,4 0,8 14 20-30 Войлок строительный 0,2 0,7 19 Древесина сосновая 0,9 1-2 14 21 ДВП 0,8 1,7 21 25 ДСП 0,4 1,5 18 Бумажно-слоистый пластик 0,5-0,8 1,5-2 18 80 Карболитовые изделия 0,2-0,4 26 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Бумага	0,64	0,5-1	13,4	12-18
Волокно штапельное 0,4 0,8 14 20-30 Войлок строительный 0,2 0,7 19 Древесина сосновая 0,9 1-2 14 21 ДВП 0,8 1,7 21 25 ДСП 0,4 1,5 18 Бумажно-слоистый пластик 0,5-0,8 1,5-2 18 80 Карболитовые изделия 0,2-0,4 26 26 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Книги	0,25	0,5-1	13,4	15
Войлок строительный 0,2 0,7 19 Древесина сосновая 0,9 1-2 14 21 ДВП 0,8 1,7 21 25 ДСП 0,4 1,5 18 Бумажно-слоистый пластик 0,5-0,8 1,5-2 18 80 Карболитовые изделия 0,2-0,4 26 26 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Кожа	0,35	0,9	21	20
Древесина сосновая 0,9 1-2 14 21 ДВП 0,8 1,7 21 25 ДСП 0,4 1,5 18 Бумажно-слоистый пластик 0,5-0,8 1,5-2 18 80 Карболитовые изделия 0,2-0,4 26 26 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Волокно штапельное	0,4	0,8	14	20-30
ДВП 0,8 1,7 21 25 ДСП 0,4 1,5 18 Бумажно-слоистый пластик 0,5-0,8 1,5-2 18 80 Карболитовые изделия 0,2-0,4 26 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Войлок строительный	0,2	0,7	19	
ДСП 0,4 1,5 18 Бумажно-слоистый пластик 0,5-0,8 1,5-2 18 80 Карболитовые изделия 0,2-0,4 26 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Древесина сосновая	0,9	1-2	14	21
Бумажно-слоистый пластик 0,5-0,8 1,5-2 18 80 Карболитовые изделия 0,2-0,4 26 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	ДВП	0,8	1,7	21	25
Карболитовые изделия 0,2-0,4 26 Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	ДСП	0,4	1,5	18	
Каучук натуральный 1 1,1 42 45 Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Бумажно-слоистый пластик	0,5-0,8	1,5-2	18	80
Каучук синтетический 0,7 1 40 35 Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Карболитовые изделия	0,2-0,4		26	
Картон 0,4 0,5-1 15 15-18 Кинопленка 0,5 19 10	Каучук натуральный	1	1,1	42	45
Кинопленка 0,5 19 10	Каучук синтетический	0,7	1	40	35
	Картон	0,4	0,5-1	15	15-18
Линолеум 0,6 18-27 70	Кинопленка	0,5		19	10
	Линолеум	0,6		18-27	70

Окончание табл. 10.8

1	2	3	4	5
Лен разрыхленный	1,3	3	16	
Резина пористая	0,4	1	17	50
Оргстекло	0,9	0,5	25	
Обтирочный материал	1,5	2,5	15,7	75
Плита столярная	0,5	1,2	20	45
Пенополиуретан	0,17	3	24	
Пенополистирол (плиты)	0,9		41	28
Резина	0,6		33	23
Стеклопластик	0,9		11	19,4
Ткань хлопковая, навал	0,3	0,36	17	75
Ткань шерстяная	0,15		23	60-70
Ткани (холст бязь, байка)		0,8-1,8		
Фанера	0,8-1		22	40-50
Резиновая и ПВХ изоляция	0,75		37	

Таблица 10.9

Линейная скорость горения

Наименование объекта	Линейная скорость распространения горения, м/мин
1	2
Административные здания	1,01,5
Библиотеки, книгохранилища, архивохранилища	0,51,0
Деревообрабатывающие предприятия:	
Лесопильные цехи (здания I, II, III степеней огнестойкости)	1,03,0
То же, здания IV и V степеней огнестойкости	2,05,0
Сушилки	2,02,5
Заготовительные цехи	1,01,5
Производства фанеры	0,81,5
Помещения других цехов	0,8,1,0
Жилые дома	0,50,8
Коридоры и галереи	4,05,0
Кабельные сооружения (горение кабелей)	0,81,1
Лесные массивы (скорость ветра 710 м/с и влажнос	ть 40%)
Сосняк	До 1,4
Ельник — долгомошник и зеленомошник	До 4,2
Сосняк — зеленомошник (ягодник)	До 14,2
Сосняк — бор-беломошник	До 18,0
Растительность, лесная подстилка, подрост, древостой при вер	рховых пожарах и

Растительность, лесная подстилка, подрост, древостой при верховых пожарах и скорости ветра, м/с

ekopoenia genipa, sure	
89	До 42
1012	До 83
89	47
1012	814
Музеи и выставки	1,01,5
Объекты транспорта:	
Гаражи, трамвайные и троллейбусные депо	0,51,0
Ремонтные залы ангаров	1,01,5

	Экончание табл. 10.8
1	2
Морские и речные суда:	
Сгораемая надстройка при внутреннем пожаре	11,22,7
То же, при наружном пожаре	2,06,0
Внутренние пожары при наличии синтетической отделки и	1,02,0
открытых проемов	
Пенополиуретан	0,70,9
Предприятия текстильной промышленности	
Помещения текстильного производства	0,51,0
То же, при наличии на конструкциях слоя пыли	1,02,0
Волокнистые материалы во взрыхленном состоянии	7,08,0
Сгораемые покрытия цехов большой площади	13,2
Сгораемые конструкции крыш и чердаков	1,52,0
Склады:	
Торфа в штабелях	0,81,0
Льноволокна	3,05,6
Текстильных изделий	0,30,4
Бумаги в рулонах	0,20,3
Резинотехнических изделий в зданиях	0,41,0
Резинотехнических изделий (штабеля на открытой площадке)	1,01,2
Каучука	0,6,1,0
Лесопиломатериалов	, , , ,
Круглого леса в штабелях	0,41,0
Пиломатериалов (досок) в штабелях при влажнос	
До 16	4.0
1618	2,3
1820	1,6
2030	1.2
Более 30	1.0
Куч балансовый древесины при влажности, %	, .
По40	0,61,0
Более40	0,150,2
	1,52,2
Сушильные отделения конезаводов Сельские населенные пункты:	1,32,2
Жилая зона при плотной застройке зданиями V степени	2,02,5
огнестойкости, сухой погоде и сильном ветре	2,02,3
	2,04,0
Соломенные крыши зданий	1,54,0
Подстилка в животноводческих помещениях	/ /
Театры и Дворцы культуры (сцены)	1,03,0
Торговые предприятия, склады и базы товарно-материальных ценностей	0,51,1
Типографии	0,50,8
Фрезерный торф (на полях добычи) при скорости вег	
1014	8,010,0
1820	18,020,0
Холодильники	0,50,7
Школы, лечебные учреждения	0.6.10
Здания I и II степеней огнестойкости	0,61,0
Здания Ш и IV степеней огнестойкости	2,03,0

Таблица 10.9

Поражение органов слуха человека при взрыве

Воздействие ударной волны на органы слуха	Давление, кПа	Шум, дБ	Расстояние, м
Временная потеря слуха	2,0	160	200
Нижний порог возможного разрыва барабан-	34,5	185	22,5
ных перепонок			
50% вероятность разрыва барабанных перепо-	103,0	195	20,0
нок			
100% вероятность разрыва барабанных перепо-	400,0	203	7,5
нок			

Таблица 10.11

Безопасное расстояние воздействия опасных факторов при горении и взрыве баллонов со сжиженным газом

-		Безо	пасное расстоян	ие. м	
Наименование фактора	Объем баллона с газом, л				
	1	5	12	27	50
Волна сжатия взрыва	35-40	55-60	70-75	80-85	90-95
Тепловое излучение	6	12	16	20	25

11. ИНТЕНСИВНОСТЬ ПОДАЧИ ОГНЕТУШАЩИХ ВЕЩЕСТВ

Таблица 11.1

Здания и сооружения	л/(м ² c)
1	2
1. Здания и сооружения	
Административные здания:	
1-3 степени огнестойкости	0,06
4 степени огнестойкости	0,10
5 степени огнестойкости	0,15
подвальные помещения	0,10
чердачные помещения	0,10
Ангары, гаражи, мастерские, трамвайные и троллейбусные депо	0,20
Больницы	0,10
Жилые дома и подсобные постройки:	
1-3 степени огнестойкости	0,03
4 степени огнестойкости	0,10
5 степени огнестойкости	0,15
подвальные помещения	0,15
чердачные помещения	0,15
Животноводческие здания:	
1 -3 степени огнестойкости	0,10
4 степени огнестойкости	0,15
5 степени огнестойкости	0,20
Культурно-зрелищные учреждения (театры, кинотеатры, клубы, дворцы ку	
сцена	0,20
зрительный зал	0,15
подсобные помещения	0,15
Мельницы и элеваторы	0,14
Производственные здания:	
Участки и цеха с категорией производства в здании:	
1-2 степени огнестойкости	0,15
3 степени огнестойкости	0,20
4-5 степени огнестойкости	0,25
окрасочные цеха	0,20
подвальные помещения	0,30
чердачные помещения	0,15
Сгораемые покрытия больших площадей в производственных здания	
при тушении снизу внутри здания	0,15
при тушении снаружи со стороны покрытия	0,08
при тушении при развившемся пожаре	0,15
Строящиеся здания	0,15
Торговые предприятия и склады товарно-материальных ценностей	0,20
Холодильники	0,10
Электростанции и подстанции:	
кабельные туннели и полуэтажи (подача тонкораспыленной воды)	0,20
машинные залы и котельные отделения	0,20

Продолжение тао.	
1	2
галереи топливоподачи	0,10
трансформаторы, реакторы, масляные выключатели (подача тонкораспыле-	0,10
нной воды)	
2. Транспортные средства	0,10
Автомобили, трамваи, троллейбусы на открытых стоянках	0,10
Самолеты, вертолеты:	0.00
внутренняя отделка (при подаче тонкораспыленной воды)	0,08
конструкции с наличием магниевых сплавов	0,25
корпус	0,15
Суда (сухогрузные и пассажирские):	0.20
надстройки (пожары внутренние и наружные) при подаче	0,20
цельных и тонкораспыленных струй	0.20
трюмы	0,20
3. Твердые материалы	
Бумага разрыхленная	0,30
Древесина:	
Балансовая, при влажности, %:	
4050	0,20
менее 40	0,50
Пиломатериалы в штабелях в пределах одной группы при влажности, %	
814	0,45
2030	0,30
свыше 30	0,20
круглый лес в штабелях в пределах одной группы	0,35
щепа в кучах с влажностью 30 50 %	0,10
Каучук (натуральный или искусственный), резина и резинотехнические изделия	0,30
Льнокостра в отвалах (подача тонкораспыленной воды)	0,20
Льнотреста (скирды, тюки)	0,25
Пластмассы:	0,23
термопласты	0,14
реактопласты	0,14
полимерные материалы и изделия из них	0,20
текстолит, карболит, отходы пластмасс, триацетатная пленка	0,30
Торф на фрезерных полях влажностью 15 30% (при удельном расходе воды	0,30
110 140 л/м ² и времени тушения 20 мин)	0,10
Торф фрезерный в штабелях (при удельном расходе воды 235 л/м ² и времени	0,20
тушения 20 мин)	
Хлопок и другие волокнистые материалы:	0.20
открытые склады	0,20
закрытые	0,30
Целлулоид и изделия из него	0,40
Ядохимикаты и удобрения	0,20
 Легковоспламеняющиеся и горючие жидкости (при тушении тонкораспылен водой) 	ннои
Ацетон	0,40
Нефтепродукты в емкостях:	, ,
с температурой вспышки ниже 28 °C	0,40
с температурой вспышки ниже 2860 °C	0,30
с температурой вспышки более 60 °C	0,20
C Tesmieparijpon Benbiniki Gonee Go	0,20

1	2
Горючая жидкость, разлившаяся на поверхности площадки, в траншеях и	0,20
технических лотках	
Термоизоляция, пропитанная нефтепродуктами	0,20
Спирты (этиловый, метиловый, пропиловый, бутиловый, и др.) на складах и	0,40
спиртзаводах	
Нефть и конденсат вокруг скважин фонтана	0,20

Примечания:

- 1. При подаче воды со смачивателем интенсивность подачи по таблице снижается в 2 раза.
- 2. Хлопок, другие волокнистые материалы и торф необходимо тушить только с добавлением смачивателя.

Таблица 11.2 Интенсивность подачи раствора пенообразователя (СНиП 2.11.03-93) (для подачи пены средней кратности)

	Нормативная интенсивность подачи раствора пенообразователя, л/(м²с)			
Вид нефтепродукта	Форэтол, универсальный, подслойный	САМПО, П0-6НП	ПО-ЗАИ, ТЭАС, ПО-ЗНП, ПО-6ТС	
1. Нефть и нефтепродукты с Т _{всп} 28°С и	0,05	0,08	0,08	
ниже, и ГЖ, нагретые выше Твсп				
2. Нефть и нефтепродукты с Твсп более	0,05	0,05	0,05	
28°C				
3. Стабильный газовый конденсат	0,12	0,23	0,30	
4. Бензин, керосин, дизельное топливо,	0.10	0,15	0,15	
полученные из газового конденсата				

Таблица 11.3 Интенсивность подачи раствора пенообразователя при подаче пены низкой кратности для тушения пожаров нефтепродуктов в резервуарах

	Нормативная интенсивность подачи раствора пенообразователя, (л/м²с)				, (л/м ² с)			
Вид нефтепродукта	Фторсинтетические пенообразователи, форэтол, универсалшый		Фторсинтетические пенообразоаатели «Легкая вода», «Гидрал»		Фторпротеиновые пенообразователи «Петрофилм»			
		Подслойный						
	На поверхность	В слой	На поверхность	В слой	На поверхность	В слой		
1. Бензин	0,08	0,12	0,08	0,10	0,08	0,10		
2. Нефть и нефтепроду- кты с Т _{всп} 28°С и ниже	0,08	0,10	0,08	0,10	0,08	0,10		
3. Нефть и нефтепроду- кты с Т _{всп} более 28°C	0,06	0,08	0,05	0,06	0,06	0,08		
4. Стабильный газовый конденсат	0,10	0,20	0,10	0,12	0,10	0,14		

Таблица 11.4 Интенсивность подачи средств для тушения струйного факела на открытых технологических установках

		Интенсивность подачи кг/кг			
Вид факела	Вид горючего	Газоводяной струи	Порошковой струи	Компактной водяной струи	
Компактная	горючего газа и жидкости	7,0	4,0	21,0	
струя:	сжиженного газа	15,0	3,8	_	
Распыленная	горючего газа и жидкости	15,0	3,8		
струя:	сжиженного газа	15,0	3,8	_	
Фонтан:	Природный газ	6,0	3,0	_	

Таблица 11.5

Интенсивность подачи порошковых огнетушащих составов (ПОС) при тушении некоторых пожаров кг/(м² с)

Аллюминийорганические и литийорганические соединения (АОС, ДОС)	0,50
(разлив)	
Древесина	0,08
Нефтепродукты с температурой вспышки паров 28 °С и ниже (разлив):	
при тушении лафетным стволом	1,00
при тушении ручным стволом	0,35
Нефть и нефтепродукты с температурой вспышки паров выше 28 °C (разлив)	0,16
Самолеты	0,30
Сжиженный газ (разлив):	
при тушении лафетным стволом	1,00
при тушении ручным стволом	0,35
Спирт	0,30
Толуол	0,20

Таблица 11.6

Огнетушащие концентрации некоторых галоидоуглеводородов, составов на их основе и других веществ

Условное обозначение	Компоненты, %	Расчетная огнетушащая концентрация		
условное ооозначение		%об	кг/м ³	
3,5	Бромистый этил — 70	6,7	0,260	
	Диоксид углерода — 30			
Бромистый этил	Бромистый этил — 100	5,4	0,242	
4НД	Бромистый этил — 97	5,6	0,203	
	Диоксид углерода — 3			
7	Бромистый метилен — 80	3,0	0,157	
	Бромистый этил — 20			
БФ-1	Бромистый этил — 84	4,8	0,198	
	Тетрафтордибромэтан -16			
БФ-2	Бромистый этил — 73	4,6	0,192	
	Тетрафтордибромэтан — 27			
БМ	Бромистый этил – 70	4,6	0,184	
	Бромистый метилен — 30			
Хладон 114В2	Тетрафтордибромэтан — 100	3,0	0,250	
Хладон 13В1	Тетрафтордибромэтан — 100	4,0	0,260	
Диоксид углерода	Диоксид углерода — 100	30	0,70	
Водяной пар	Водяной пар — 100	35	0,30	

Огнетушащее средство	Интенсивность подачи, кг/(м³ с), в помещениях с проемами		
Отнетушащее средство	закрытыми	открытыми	
Водяной пар	0,002	0,005	
Состав:			
3,5	0,003	0,006	
БФ-1	0,002	0,005	
4НД	0,002	0,005	
7	0,001	0,004	
Диоксид углерода	0,006	0,015	

Таблица 11.8 Интенсивность подачи распыленной воды для локализации горения струйного факела при пожарах па открытых технологических установках по переработке горючих жидкостей и газов

Тип ствола	Интенсивность подачи распыленной воды л/кг, при расстоянии до защищаемого оборудования, м 5 10 15 20			
		10	15	20
Ручные стволы РС- Л РС -Б, РСК-50	7,0	5,0	3,5	3,0
Турбинные распылители НРТ-5, НРТ-10, НРТ-20	3,5	2,5	2,0	1,5
На орошение факела для снижения теплового				
потока при создании безопасной зоны в процессе				
боевой работы				
Распыленные струи:				
- из ручных стволов	20,0	15,0	10,0	8,0
- из турбинных распылителей	10,0	7,0	5,0	4,0

Таблица 11.9 **Интенсивность подачи воды на охлаждение (защиту) горящих и соседних объектов**

Наименование объектов, зданий, сооружений, материалов	Интенсивность подачи воды		Расход воды,
паименование объектов, здании, сооружении, материалов	л/(м ² c)	л / (мс)	л/с
1	2	3	4
Объекты переработки углеводородных газов,			
нефти и нефтепродуктов:			
колонны, оборудование, трубопроводы, другие	0,3		_
аппараты при горении газообразных и жидких			
нефтепродуктов			
то же, не соседние с горящими аппаратами	0,2	_	_
эстакады (трубопроводы с нефтепродуктами)	0,2 0,3	_	_
Резервуары наземные металлические с ЛВЖ и	· ·		
ПК:			
охлаждение горящего резервуара по всему пе-	_	0,5	_
риметру			
охлаждение соседнего по полупериметру со	_	0,2	_
стороны горящего резервуара			
охлаждение емкостей, находящихся в зоне горе-	_	1,0	
ния жидкости в обваловании (охлаждение по			
всему периметру лафетным стволом)			

Продолжение табл. 11.9

		Продолжени	ие табл. 11.9
1	2	3	4
Резервуары подземные железобетонные с ЛВЖ			
И ГЖ (горящие и соседние с ними):			
охлаждение дыхательной и другой арматуры,			
установленной на крышах при емкости резер-			
вуара, м³:			10
4001000		_	10
10005000		_	20
500030000			30
3000050000		_	50
Резервуары со сжиженными газами (емкости,			
трубопровод, арматура):	0,5		
для компактных струй		_	
для распыленных струй, получаемых из ручных	0,3	_	_
Стволов	0.2		
Суда (металлические конструкции)	0,3	0,5	
Противопожарные занавесы в культурно- зрелищных учреждениях	_	0,5	
зрелищных учреждениях Штабеля круглого леса при локализации разви-		1,4	
вающегося пожара в разрыве 10м	_	1,4	
Вающегося пожара в разрыве том Штабеля пиломатериалов при ширине разрыва			
между группами штабелей, м (локализация по-			
жара):			
мара). 10		2,0	
25		0,6	
40		0,0	
Фонтаны (газовые и нефтяные):		0,2	
при подготовке атаки:			
территория и металлоконструкции, охватывае-	0,35	_	_
мые фронтом пламени	0,55		
территория и металлоконструкции, отстоящие	0,15	_	_
от фонтана на расстоянии 10-15 м	0,15		
при проведении атаки:			
территория и металлоконструкции, охватывае-	0,2		
мые пламенем	٥,2		
Электростанции и подстанции (трансформатор-			
ные и масляные выключатели):			
горящие (охлаждение по всему периметру)	_	0,5	_
соседние с горящими (охлаждение половины	_	0,3	
периметра, обращенного к горящему)		0,5	
периметра, обращенного к горищему)		I	

12. ОРИЕНТИРОВОЧНЫЕ НОРМАТИВЫ НЕОБХОДИМОЙ ЧИСЛЕННОСТИ ЛИЧНОГО СОСТАВА ДЛЯ ВЫПОЛНЕНИЯ НЕКОТОРЫХ РАБОТ НА ПОЖАРЕ

Таблица 12.1 Ориентировочные нормативы необходимой численности личного состава

Виды работ	Чис-ть, чел
1	2
Работа со стволом Б на ровной плоскости (с земли, пола и.т.д.)	1
Работа со стволом Б на крыше здания	2
Работа со стволом А	23
Работа со стволом Б или А в атмосфере, непригодной для дыхания среде	34
(звено ГДЗС)	
Работа с переносным лафетным стволом	34
Работа с воздушно-пенным стволом и генератором ГПС-600	2
Работа с генератором $\Gamma\Pi C - 2000$	34
Работа с пеносливом	23
Установка пеноподъемника	56
Установка выдвижной переносной пожарной лестницы	2
Страховка после ее установки	1
Разведка в задымленном помещении (звено ГДЗС)	3
Разведка в больших подвалах, туннелях, метро, бесфонарных зданиях (2	6
звена ГДЗС)	
Спасение пострадавших из задымленного помещения и тяжелобольных	2
Спасание людей по пожарным лестницам и с помощью веревки (на участке	45
спасения)	
Работа на разветвлении и контроль за рукавной системой при прокладке:	
рукавной линии в одном направлении (из расчета на одну машину)	1
двух рукавных линий в противоположных направлениях (из расчета на одну	2
машину)	
Вскрытие и разборка конструкций:	
Выполнение действий на позиции ствола, работающего по тушению пожара	Не менее
(кроме ствольщика)	2
Выполнение действий на позиции ствола, работающего по защите (кроме	12
ствольщика)	
Работа по вскрытию покрытия большой площади (из расчета на один ствол,	34
работающий на покрытии)	
Работа по вскрытию 1 м ² :	
дощатого шпунтового или паркетного щитового пола	1
дощатого гвоздевого или паркетного штучного пола	1
оштукатуренной деревянной перегородки или	1
подшивки потолка	1
металлической кровли	1
рулонной кровли по деревянной опалубке	1
утепленного сгораемого покрытия	1

1	2
Вскрытие деревянных стен, перегородок толщиной 0,25 — 0,3 м цепной электропилой	6
Пробивание отбойным молотком в железобетонной плите толщиной 0,15 м отверстия диаметром 0,5 м	18
Вскрытие на площади 1 м ² ручным механизированным инструментом:	
- металлической кровли	1
- рулонной кровли на битумной основе по деревянной обрешетке	5
- утепленного горючего покрытия	10
- деревянной перегородки или подшивки потолка толщиной 0,1 м	3
- дощатого шпунтового или паркетного щитового пола	2
- дощатого гвоздевого или паркетного штучного пола	1
Перекачка воды: контроль за поступлением воды в автоцистерну (на каждую машину)	1
Контроль за работой рукавной системы (на 100 метров линии перекачки)	1
Подвоз воды: сопровождающий на машине	1
Работа на пункте заправке	1

Примечания: 1. Средний и старший начальствующий состав, а также водители пожарных автомобилей при расчете требуемой численности людей не учитываются.

- 2. В общее количество личного состава необходимо включать связных у РТП, НШ, НТ и НБУ и пожарных, выполняющих вспомогательные работы.
- 3. Необходимое количество людей для выполнения действий по эвакуации материальных ценностей определяют отдельно с учетом конкретных условий и объема необходимых работ.
- 4. Если требуемая численность людей превышает возможности гарнизона пожарной охраны, недостающее количество личного состава компенсируется путем привлечения к действиям на пожаре добровольных пожарных формирований, рабочих, служащих, воинских подразделений, работников милиции, населения и других сил.
 - 5. При определении требуемой численности людей.

13. ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРОВ ГДЗС И ПАРАМЕТРЫ РАБОТЫ В НИХ

Таблица 13.1 Сравнительные технические характеристики кислородных изолирующих противогазов

Мар- ка	Наимено- вание	Технические характеристики	Значение
		Время защитного действия при расходе воздуха 30 дм ³ /мин, мин	60
	ук	Вместимость баллона для сжатого воздуха, дм ³	7
	Диі	Рабочее давление сжатого воздуха в баллоне, МПа	29,4
1	изол	Максимальное сопротивление вдоху при нагрузке средней тяжести, Па	300
AMP-317	оздушный изо цля пожарных	Среднее сопротивление вдоху при нагрузке средней тяжести, Па	150
Ψ	1. L	Диапазон рабочих температур, °С	-40+60
	03) ДЛ	Габаритные размеры, мм	790x320x220
	Аппарат воздушный изолирующий для пожарных	Масса аппарата без спасательного устройства, кг, не более	15,8
		Масса спасательного устройства, кг, не более	1
	Aп	Средний срок службы, лет, не менее	10
	ий	Время защитного действия при нагрузке средней тяжести, мин	100
	ПО	Вместимость дыхательного мешка, л, не менее	4,24,45
	руг й	Вместимость кислородного баллона, л	1
КИП-8	Противогаз изолирующий кислородный	Номинальный запас кислорода в баллоне при давлении 20 МПа, л	200
2	3 M	Постоянная подача кислорода в противогаз, л/мин	1,21,6
X	вога	Легочно-автоматическая подача кислорода в противогаз, л/мин	40
	OTT.	Диапазон рабочих температур, °С	-20+60
	Tp	Габаритные размеры, мм	450x345x160
		Масса, кг, не более	10

Таблица 13.2

Аппараты дыхательные типа АИР-98 МИ

					_		
Обозначение апарата	Кол- во	Данные Вмести мость	по балл Р, кг/см ²		Время защитного действия при легочной венти-	Масса снаряжен- ного аппа-	Габариты аппарата, мм
					ляции 30 дм ³ /мин	рата, кг	
1	2	3	4	5	6	7	8
АИР-98 МИ-10-11	1	7	300	Сталь			
АИР-98 МИ-20-21	2	4	300	Композит			
				(нерж.			
				сталь)			
АИР-98 МИ-30-31	1	6,8	300	Композит			
				(сталь)			
АИР-98 МИ-40-41	2	6	300	Композит			
				(алюм.)			

1	2	3	4	5	6	7	8
АИР-98 МИ-50-51	1	6,8	300	Композит			
				(алюм.)			
АИР-98 МИ-60-61	2	4	300	Сталь			
АИР-98 МИ-70-71	1	9	300	Композит			
				(алюм.)			
АИР-98 МИ-80-81	2	4,7	300	Композит			
				(алюм.)			
АИР-98 МИ-90-91	1	9	300	Композит			
				(алюм.)			
АИР-98 МИ-100-	2	6,8	300	Композит			
101				(алюм.)			
АИР-98 МИ-110-	1	6	300	Композит			
111				(алюм.)			
АИР-98 МИ-120-	2	4	300	Сталь			
121							
АИР-98 МИ-130-	1	4	300	Композит			
131				(нерж.			
				сталь)			

Таблица 13.3 Сравнительные технические характеристики кислородных изолирующих противогазов

Nº		Значение параметра противогазов						
п/п	Параметр	КИП-8	P-12M	P-30	РВЛ-1	УРАЛ-10	УРАЛ-7	
1	Время защитного дейст-	100	240	240	120	240	240	
	вия, мин							
2	Запас кислорода в баллоне	200	400	400	200	400	400	
	при давлении 20 кгс/см2, л							
3	Подача кислорода в сис-							
	тему, противогаза, л/мин:		$1,4\pm0,2$			$4\pm0,1$		
	легочного автомата	60-150		60-150				
	аварийная подача		40			60		
4	Вес, кг	10,0	14,0	1,8	8,4	12,8	14,0	

Таблица 13.4 Тактико-технические характеристики дыхательных изолирующих аппаратов на сжатом воздухе

Nº	Vanautanuatuuu	Тип дь	Тип дыхательного аппарата				
п/п	Характеристики	ACB-2	АИР-А	АИР-АЛ			
1.	Масса снаряженного аппарата, кг	15,5	9,0	7,6			
2.	Количество баллонов	2	1	1			
3.	Количество дополнительных баллонов		1	1			
4.	Срок защитного действия без замены балло-	40	20 (40)	20 (40)			
	нов (со сменой балл.), с						
5.	Наличие звукового сигнализатора исчерпания	_	Да	Да			
	рабочего запаса сжатого воздуха						
6.	Рабочее давление в баллоне, МПа	20,0	19,6	20,6			
7.	Габаритные размеры аппаратов, м						
	-длина	535	660	660			
	-ширина,	295	220	220			
	-высота	150	150	150			

Таблица 13.5

Технические показатели дымососов

Показатели	Пер	еносные осе	Мобильные центробежные		
Показатели	ДПМ-7	ДПЭ-7	ДП-100	ДП-30	АДУ-90
Подача по воздуху (по пене)	9000	7000	5840	30000	90000
	(7200)	(7200)	(4600)	(14400)	(54000)
Мощность двигателя, кВт	2,5	1,1	4,5	40,4	84,5
Напряжение, В	_	220	220	_	_
Масса, кг, с комплектом штанг,	92	82	160	1600	_
перемычек, напорных и всасы-					
вающих рукавов					
Длина рукавов, м:					
всасывающих	5	5	7	8	_
напорных	10	10	40	10	
Диаметр рукавов, мм:					
всасывающих	520	520	320	_	_
напорных	540	540	320	_	

Таблица 13.6 Расход кислорода отделениями и звеньями ГДЗС при боевой работе в тоннельных сооружениях

A.V	
Виды боевой работы	Расходы кислорода, л/мин
Работа со стволами	2,6
Передвижение по тоннелю с рукавом «А» в скатке	3,0
Передвижение по тоннелю без нагрузки	2,6
Передвижение по тоннелю звена ГДЗС (4 чел.) с пострадавшим	3,2
Боевое развертывание в тоннеле	2,6

14. ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОЖАРНЫХ ПОЕЗДОВ, СУДОВ И ВЕРТОЛЕТОВ

Таблица 14.1 Тактико-технические характеристики пожарных судов

Nº		Наименов	ание судов
п/п	Основные характеристики	Вьюн	Mapc
		проект 16640	проект 14613
1	Длина, м	30,8	39,4
2	Ширина, м	5,0	7,8
3	Высота борта, м	2,42	3,3
4	Водоизмещение, т	67,4	385,0
5	Осадка при полном водоизмещении, м	0,81	2,2
6	Скорость, узлов*	36	11,5
7	Запасы дизельного топлива, т	3	1,26
8	Объем пенообразователя, т	2,26	_

^{* 1} узел — 1,1855 км/ч.

Таблица 14.2 Тактико-технические характеристики пожарных поезлов

Nº	Основные характеристики	Категор	ии поездов
п/п	Основные характеристики	1 категории	2 категории
1	Емкость цистерны для воды, м ³	72,3 или 50	72,3 или 50
2	Рукава напорные 51 мм, м	700	500
3	Рукава напорные 66 мм, м	1000	800
4	Пенообразователь, л	10000	5000
5	Боевой расчет, чел.	7	6
6	Огнетушители, шт.:		
	- углекислотные ОУ-5	5	5
	- порошковые ОП-5	5	5
	- порошковые передвижные ОП-50	2	2
7	Мотопомпы ММ-27/100, ПН-40/100	2	2

Пожарный вертолет KA-32A1 применяется для тушения пожаров и проведения аварийно-спасательных работ в любое время суток.

Пожарный вертолет МИ-26Т предназначен для тушения степных, лесных, промышленных пожаров, а так же для доставки грузов и техники.

Таблица 14.3

Основные технические характеристики пожарных вертолетов

	Concension remain repair opiner man normaphism seprements							
Nº	Характеристика	Значение	Значение параметра					
п/п	<u> Дарактеристика</u>	KA-32A1	МИ-26Т					
1	Взлетная масса максимальная, кг	12700	56000					
2	Мощность силовой установки, л.с.	2x2200	2x10000					
3	Грузоподъемность, кг	5000	20000					
4	Максимальная скорость, км/ч	250	295					
5	Практическая дальность полета, км	450	590					
6	Максимальная продолжительность полета, ч	2,5						
7	Количество пассажиров; чел.	2200	10000					

- **1. Морской спасательный комплект МСК-5** применяется на вертолетах в качестве индивидуального снаряжения спасателей, обеспечивает необходимые жизненные условия при выполнении АСР на водоемах.
- **2.** Спасательный пояс и спасательная косынка предназначены для подъема спасаемых на борт вертолета или переноса вертолетом в безопасное место.
- **3. Подвесная система** предназначена для подъема и спуска спасателей.
- **4. Тормозной блок** предназначен для выполнения десантирования людей и грузов в режиме "висение" вертолета.
- **5. Универсальный гидравлический инструмент "ЭКОЭТ"** применяется при извлечении пострадавших из зданий, сооружений и транспортных средств, поврежденных в результате катастроф, аварий и стихийных бедствий.
- **6.** Транспортно-спасательные кабины ТСК предназначены для эвакуации людей с крыш, балконов или оконных проемов верхних этажей, а так же для доставки пожарных и ПТВ к местам тушения пожаров и проведения АСР. На ТСК-2 и ТСК-3 могут быть установлены быстросъемные поплавки для использования их на воде.

ТСК-1 предназначена для спасения 2 человек. Работы с ТСК-1 производятся с использованием бортовой лебедки вертолета. К месту пожара кабина доставляется в кабине вертолета. Вес 68 кг.

TCK-2 предназначена для спасения 20 человек. При спасении людей кабина перевозится на внешней грузовой подвеске. При работе на воде кабина оборудуется поплавками. Грузоподъемность 2000 кг. Вес 450 кг.

TCK-3 предназначена для спасения 10 человек. При спасении людей кабина перевозится на внешней грузовой подвеске. Может быть оборудована поплавками. Грузоподъемность 1000кг. Вес 135кг.

7. Водосливные устройства предназначены для тушения открытых пожаров больших площадей с использованием вертолетов. Они доставляются к месту пожара на внешней подвеске вертолета.

Таблица 14.4 Основные тактико-технические характеристики ВСУ-5

Nº	Усланталистина	Значение параметра			
п/п	Характеристика	ВСУ-5	"Бемби-бакет"		
1	Емкость, л	3000-4500	3500-5000		
2	Время набора воды, не более, с	25	110		
3	Время слива воды. не более, с	4,5-6,0	4-6		
4	Вес, не более, кг	120	120		
5	Температурный режим, не ниже	-8	-8		

15. ОБЩИЕ ПОНЯТИЯ О ТАКТИЧЕСКИХ ВОЗМОЖНОСТЯХ ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ

Тактические возможности пожарных подразделений (ТВПП) — это способность личного состава оснащенного техническими средствами выполнять поставленную задачу за определенное время, т.е. время фактическое $\tau_{\rm d}$ должно быть меньше или равно времени нормативного $\tau_{\rm h}$: $\tau_{\rm d} \! \leq \! \tau_{\rm h}$.

K техническим средствам можно отнести огнетушащие средства и материалы (OCM), пожарные автомобили (ПА), пожарно-техническое вооружения (ПТВ) и др.

В зависимости от назначения ПА подразделяются на:

- основные ПА
- спениальные ПА

Тактико-технические характеристики пожарных автомобилей приведены в разделах 3-6.

Отделение, вооруженное автоцистерной, автонасосом или насоснорукавным автомобилем, является первичным тактическим подразделением пожарной охраны, которое способно самостоятельно выполнять отдельные задачи по ликвидации горения на пожаре, спасанию людей, защите и эвакуации материальных ценностей.

Основным тактическим подразделением пожарной охраны является караул, состоящий из двух или более отделений на основных пожарных автомобилях. В зависимости от специфики охраняемого района или объекта караулы могут быть усилены отделениями на специальных пожарных машинах.

Для того чтобы правильно использовать пожарные подразделения на пожарах, каждый командир должен твердо знать их тактические возможности. Тактические возможности пожарного подразделения зависят от тактико-технических характеристик пожарной машины, укомплектованности пожарно-техническим вооружением, численности и тактической подготовки боевого расчета, от взаимодействия между подразделениями, оперативно-тактических особенностей объекта (района выезда) и других факторов. Тактико-технические возможности пожарных машин можно повышать за счет их совершенствования, внедрения рационализаторских предложений, укомплектования дополнительным пожарно-техническим вооружением.

В системе боевой подготовки личный состав боевых расчетов отделений совершенствует свои знания и навыки в работе с пожарно-техническим вооружением, отрабатывает и совершенствует взаимодействие между номерами боевого расчета. Это позволяет повышать тактические возможности пожарных подразделений, дает возможность быстро и эффективно использовать их при тушении любых пожаров.

Отделения на автоцистернах, имея запас воды и пенообразователя , не устанавливая автоцистерну на водоисточник, могут подъехать непосредственно к месту пожара и ввести водяные или пенные стволы для ликвидации горения, а также принять меры по обеспечению спасательных работ, предотвращения взрывов или обрушения конструкций и аппаратов или сдерживать распространение огня на решающем направлении до введения сил и средств других подразделений. Время, в течение которого отделение обеспечит подачу огнетушащих средств, зависит от объема воды и пенообразователя в заправочных емкостях автоцистерны, а также от числа и типа подаваемых водяных и пенных стволов.

При установке автоцистерн на водоисточники тактические возможности отделений увеличиваются. Тактические возможности отделений на автоцистернах возрастают при наличии СИЗОД для работы в задымленной и отравленной среде.

Отделения, вооруженные насосно-рукавными автомобилями, в основном выполняют на пожарах те же боевые действия, что и отделения на автоцистернах. Однако объем работ, выполняемых отделением на насосно-рукавном автомобиле, значительно больше. Это обусловлено тем, что численность боевого расчета на насосно-рукавном автомобиле выше, чем на автоцистерне, у них больше пенообразователя, пожарных рукавов и другого пожарно-технического вооружения, необходимого для выполнения работ на пожарах.

Объем работ, выполняемых караулом, складывается из тактических возможностей отделений, входящих в его состав. При этом каждое отделение решает свою задачу, которая является частью общей задачи, стоящей перед караулом.

В то же время, чтобы оценить какие силы и средства необходимо привлечь для тушения данного пожара, РТП должен знать тактические возможности, т.е. что же может выполнить то или иное подразделение.

Учесть все факторы для определения тактических возможностей чрезвычайно сложно, если вообще возможно. Поэтому, для обоснованного подхода к решению этой задачи требуется разработка показателей, отражающих взаимосвязь всех составляющих процесса тушения пожара.

Предположим, что такими показателями может быть группа коэффициентов, характеризующих влияние наиболее существенных факторов, определяющих процесс тушения. При этом необходимо, чтобы эти коэффициенты могли найти применение в формуле, отражающей общую закономерность протекания боевых действий для различных начальных условий.

Тактические возможности условно можно разделить по видам боевых действий. При этом, если удастся определить тактические возможности пожарных подразделений по каждому из них, то представляется возможность оценить их в целом по формуле

$$K_{T,B} = f(\alpha_1 K_1, \alpha_2 K_2, ..., \alpha_i K_i), i = 1, n,$$

где κ_i — коэффициент, учитывающий эффективность реализации тактических возможностей і-го боевого действия;

 α — коэффициент, учитывающий значимость (весомость) і-го вида боевых действий.

Коэффициент эффективности і-го боевого действия можно определить по формуле:

$$K_i = \tau_H / (\tau_\Phi - \Sigma t_i),$$

где $\tau_{_{\rm H}}$ — нормативное время выполнения і-го боевого действия;

 τ_{ϕ} — фактическое время выполнения і-го боевого действия;

 $t_{\rm j}^{\psi}$ — время, затраченное на выполнение работы, не связанной с боевым лействием.

При этом полученный результат может быть меньше, равен или больше елиницы:

 $K_i \ge 1$ — тактические возможности реализованы;

 $k_i < 1$ — тактические возможности не реализованы.

Однако, для того, чтобы определить обобщенный показатель уровня реализации тактических возможностей требуется определить нормативное время выполнения каждого вида боевых действий и коэффициенты их значимости.

Рассмотрим некоторые возможные пути оценки пожарных подразделений по реализации своих тактических возможностей на пожаре.

16. ОЦЕНКА ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ ПО РЕАЛИЗАЦИИ СВОИХ ТАКТИЧЕСКИХ ВОЗМОЖНОСТЕЙ ПО БОЕВОМУ РАЗВЕРТЫВАНИЮ

На пожаре идет борьба за выигрыш времени, т.е. чем раньше мы приступим к тушению, тем успешнее ликвидируем пожар и с меньшим ущербом. Продолжительность боевого развертывания, являясь функцией множества различных постоянных и переменных факторов, что обуславливает трудность разработки его аналитических зависимостей.

В общем, виде продолжительность боевого развертывания можно описать моделью

 $au_{6,p}=f$ ($N_{\text{л.с.}},\ N_{\text{a}},\ P,\ L,\ M,\ B_{\text{r}},\ B_{\text{c}},\ t^{\text{o}},\ h_{\text{9}},\ \alpha,\ \Pi,\ N_{\text{9}},\ h_{\text{c}}$,Y, O) + ϵ , где: $N_{\text{л.с.}}$ — численность боевого расчета;

 $N_{\rm a}, \ P$ — количество используемого пожарно-технического вооружения и его масса соответственно;

L — длина рукавной линии;

М — участок, местности, где проводится боевое развертывание;

 B_r — время года;

В_с — время суток;

t° — температура окружающей среды;

h₀ — глубина снега;

 α — угол уклона местности;

 Π — вид пожарной машины;

N₂, h₂ — количество и высота этажа соответственно;

Y — условия боевого развертывания (залымленность):

О — обученность личного состава;

случайная компонента, учитывающая влияние неучтенных факторов.

Постоянными факторами являются: $N_{\text{n.c.}},\ N_{\text{a}},\ P,\ N_{\text{9}},\ h_{\text{9}}$

Переменными факторами — M, B_r , B_c , t^o , α Π , Y, O, ϵ

Как показывает практика, а эксперименты подтверждают, что основное влияние на продолжительность боевого развертывания оказывают влияние количество пожарных проводящих его, количество и масса используемого пожарно-технического вооружения (ПТВ) и расстояние, на которое оно перемещается.

Это позволяет сделать некоторые упрощения математической модели для определения времени боевого развертывания.

С учетом выше сказанного ниже представлены формулы для определения времени боевого развертывания в дневное летнее время на горизонтальном асфальтированном участке местности и в этажи зданий.

Боевое развертывание может производиться, как с установкой на водо источник, так и без установки, как с возвратом пожарных к пожарному автомобилю за недостающим пожарно-техническим вооружением,

так и без него. Пожарные могут работать без защиты органов дыхания, так и с зашитой их индивидуальными средствами.

В случае проведения боевого развертывания одновременно на горизонтальном участке местности и в этажи здания может быть два варианта:

- боевое развертывание по горизонтали и в этажи здания выполняет один и тот же личный состав, в этом случае общее время боевого развертывания будет равна сумме времени боевого развертывания по горизонтали и в этажах здания;
- боевое развертывание по горизонтали и в этажи здания выполняет различный боевой расчет, в этом случае общее время боевого развертывания принимается по максимальному времени одной из групп.

Формула для определения времени (с) боевого развертывания на участке местности имеет вид

$$\tau_{6,p} = k(0.32AL(\beta_1 + \beta_2, \beta_3) + \tau_{p}). \tag{16.1}$$

Боевое развертывание в этажах зданий и на высоту осуществляется различными способами, основные из них: подъем напорной рукавной линии с помощью спасательной веревки; опусканием напорных пожарных рукавов, поднятых на требуемую высоту пожарными; прокладка напорных рукавных линий по маршам лестничной клетки и пожарным лестницам. При этом основное влияние на время боевого развертывания в этажи зданий будет оказывать высота подъема и количество пожарных, участвующих в нем.

Время боевого развертывания в этажах здания (от лестничной площадки первого этажа до лестничной площадки установки пожарно-технического вооружения) определяется следующими формулами:

При подъеме напорной рукавной линии с помощью спасательной веревки

$$\tau_{6,p} = k(4,5 \beta, h_3 (N_3 - 1)). \tag{16.2}$$

При прокладке напорной рукавной линии опусканием рукавов вниз

 $\tau_{6,p} = k(4,4 \, \beta_3 \, h_3 \, (N_3 - 1)).$ При прокладке напорной рукавной линии по маршам лестничной клетки

$$au_{6,p} = k(4,1A\ h_{_3}\ (N_{_3}-1)\ (0,5\beta_1+\beta_2\ \beta_3)),$$
 (16.4) где: $au_{_B}-$ среднее время установки пожарной машины на водоисточник, с;

- $\beta_1, \ \beta_2$ коэффициенты, учитывающие долю расстояния преодолеваемую пожарными без ПТВ и с ПТВ соответственно;
- β₃ коэффициент, учитывающий влияние массы пожарно-технического вооружения;

h₃ - высота этажа, м;

А - коэффициент, учитывающий сколько раз в среднем пожарный преодолевает расстояние от пожарной машины до позиции ствола;

К – коэффициент, учитывающий влияние неучтенных факторов;

L – длина рукавной линии, м;

N₂ - количество этажей.

Коэффициент, учитывающий влияние массы пожарно-технического вооружения на время боевого развертывания определяется по табл. 16.1.

Таблица 16.1

Масса ПТВ, кг	0	0:5	5:10	10:15	15:20	20:25	25:30	30:35	35:40
β3	1,0	1,05	1,1	1,2	1,26	1,37	1,42	1,47	1,52

Время установки пожарной машины на водоисточник определяется по табл. 16.2 в зависимости от вида водоисточника и численности боевого расчета (время установки учитывается только в том случае, когда установку пожарной машины на водоисточник и прокладку рукавных линий производит один и тот же личный состав)

Таблица 16.2 Время установки пожарной машины на водоисточник (τ_s) , с

Волоисточник		Боевой рас	чет, чел.	
Водоисточник	1	2	3	Более 3-х
Пожарный гидрант	70	35	23	15
Открытый водоисточник	52	26	18	18

Масса пожарно-технического вооружения определяется по табл. 9.10. Коэффициенты, учитывающие долю расстояния, преодолеваемую пожарным, без пожарно-технического вооружения и с пожарно-техническим вооружением определяется по формулам:

$$eta_1 = 0$$
 $eta_1 = (A-1)/(2A)$ $\beta_1 = (A-1)/(2A)$ $\beta_2 = 1$ $\beta_2 = 1 - \beta_1$ $\beta_2 = 1 - \beta_1$

Коэффициент A, учитывающий сколько раз в среднем пожарный преодолевает расстояние от пожарной машины до позиции ствола, зависит от расстояния и количества участвующих в боевом развертывании пожарных.

Математические зависимости для определения коэффициента А имеют следующий вид:

при перемещении пожарных без защиты органов дыхания

$$A = 1/N_{\text{n.c.}}(1+L/40) - 1 + 20/L(N_{\text{n.c.}} - 1),$$
(16.6)

при перемещении пожарных с использованием индивидуальных средств защиты органов дыхания

$$A = 1/N_{3R}(1+L/I_{3R}) - 1 + 0.5 I_{3R}/L(N_{3R} - 1),$$
(16.7)

где $l_{_{18}}$ — возможность одного звена газодымозащитников по прокладке напорных пожарных рукавов, м (табл. 16.3);

 $N_{_{3B}}-$ количество звеньев газодымозащитников, производящих боевое развертывание, шт;

 $N_{\text{\tiny л.с.}}$ — численность боевого расчета, чел.

При получении A<1, принимая A=1, так как в любом случае один из пожарных преодолевает расстояние (L) от пожарной машины до позинии ствольшика.

Значение 1,, м

		30.		
Количество рукавов, переносимых	Коли	чество газодымоза	ащитников в звене,	чел.
одним газодымозащитником, шт	2	3	4	5
1	40	60	80	100
2	80	120	160	200

Коэффициент К, учитывающий влияние переменных факторов, оказывающих влияние на время боевого развертывания (физическая усталость, снежный покров, температура окружающей среды, уклон местности, возраст пожарных, время суток, покрытие участка местности) определяется по формуле

$$K = \Pi \cdot K_i, i = 1, n \tag{16.8}$$

где K_i — коэффициент учитывающий влияние i-го фактора на время боевого развертывания.

Коэффициенты, учитывающие влияние снежного покрова, температуры окружающей среды, уклон местности, возраст пожарных, время суток, покрытие участка местности и определяются по табл. раздела 2.

При ведении боевых действий на работоспособность будет влиять усталость, тяжелая снижает скорость и время выполнения боевых задач, и не в полной мере реализуются тактические возможности подразделений пожарной охраны. Тяжесть работы определяется по частоте сердечных сокращений: легкая — до 85 уд/мин, средняя — 86-115, тяжелая — 116-130, очень тяжелая — 130 уд/мин. Влияние усталости на работоспособность пожарного можно показать на графике (рис. 16.1), где а — кривая работоспособности, в — кривая наступления усталости, (а+в) — кривая работоспособности с учетом влияния усталости.

Чтобы подойти к математическому описанию работоспособности, необходимо исходить из несколько упрощенных гипотез относительно связей между процессами динамики работоспособности.

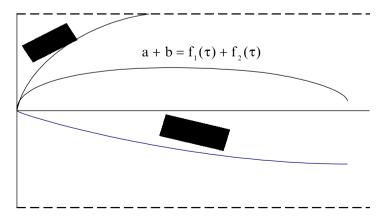


Рис. 16.1 Общий вид взаимодействия усталости и работоспособности

Во-первых, в динамике работоспособности действует фактор врабатывания или вхождения в работу, а также фактор утомления, который снижает работоспособность, нарушает приспособление организма человека к условиям труда. Оба этих фактора действуют в противоположных направлениях, но в начале работы имеет перевес первый, а в конце работы второй фактор.

Утомление снижает работоспособность только до известного предела. Действие утомление в организме встречается с действием контрмер, тем более интенсивных, чем сильнее утомление. Кроме того, при снижении работоспособности, вследствие утомления, снижается нагрузка и темп работ.

В каждый момент времени действуют два фактора и ключевые функции изменяются пропорционально алгебраической сумме значений этих двух факторов.

Фактор врабатывания удобно представить, как экспоненциальную функцию от времени положительного знака.

Действительно, врабатывание не может возрастать со временем бесконечно, оно асимптотически приближается к некоторому предельному уровню. С течением времени скорость нарастания врабатывания уменьшается. Фактор утомления удобно описать экспоненциальной функцией отрипательного знака.

Исходя, из этих предпосылок и были получены формулы позволяющие определить влияние усталости на скорость ведения боевых действий.

При широком применении математического анализа и моделирования физиологических процессов трудовой деятельности открывается реальная возможность создания единой физиологической квалификации трудовых процессов, выполняемых пожарными на пожарах, учениях, занятиях и решение ряда связанных с этим важных вопросов обоснования тактических возможностей пожарных подразделений.

В частности открывается возможность математическим расчетом находить оптимальные моменты для назначения перерывов и пауз для отдыха.

Физическая усталость личного состава учитывается в том случае, когда одни и те же пожарные производят боевое развертывание сначала на местности, а затем в этажах зданий.

Коэффициент, учитывающий физическую усталость пожарных, определяется для работ выполняемых без средств защиты органов дыхания, и для работ, выполняемых со средствами защиты органов дыхания.

При выполнении работ без средств защиты:

на горизонтальном участке

$$k_p = 1,03(\exp(0.07\tau) - \exp(-0.7\tau)),$$
 (16.9)

по маршам лестничной клетки

$$k_{\rm p}=1,15(\exp(0,01\tau)-\exp(-0,44\tau)),$$
 (16.10) где τ — время непрерывной работы при проведении боевого развертывания,

мин.

При выполнении работ с защитой органов дыхания коэффициент, учитывающий физическую усталость, определяется:

$$k_n^3 = 1.5 k_n$$
 (16.11)

В том случае, когда пожарные перемещаются, не производя работ по боевому развертыванию, это время принимается равным продолжительности передвижения и определяется по формулам, представленным в табл. 9.7.

Расчет времени боевого развертывания рассмотрим на примерах.

Задача 16.1: Отделение из трех пожарных на АЦ в ночное время, при лунном освещении, вручную, без защиты органов дыхания устанавливает автомобиль на гидрант и по горизонтальному покрытому 25 см слоем снега участку местности прокладывает магистральную линию на расстояние 260 м из прорезиненных рукавов диаметром 77 мм.

Требуется определить время боевого развертывания.

Решение:

1.По формуле (16.6) определяем значение коэффициента А

$$A = 1/N_{\text{n.c.}}(1 + L/40) - 1 + 20/L(N_{\text{n.c.}} - 1) = 1/3(1 + 260/40) - 1 + 20/260 \cdot (3 - 1) = 1,65$$

2. По формуле (16.5) определяем значение коэффициентов β_2 , β_1 , а по табл. 16.1 — значение β_3 .

$$\beta_1 = (A - 1)/(2A) = (1,65 - 1)/(2 \cdot 1,65) = 0.2$$

$$\beta_2 = 1 - \beta_1 = 1 - 0.2 = 0.8$$

- $\beta_3 = 1,47$, так как масса 2-х напорных прорезиненных рукавов диаметром 77 мм составляет 34 кг (см. табл. 9.10)
- 3. По табл. 16.1 определяем время установки пожарной машины на гидрант.

$$\tau_{\scriptscriptstyle B} = 23$$
 c.

4. По табл. 9.6 определяем коэффициент, учитывающий влияние снежного покрова участка местности на время боевого развертывания.

$$K_c = 2,0.$$

5. По табл. 9.1 определяем коэффициент, учитывающий влияние ночного времени и лунного освещения на время боевого развертывания.

$$K_{H} = 1,1.$$

6. По формуле (16.8) определяем коэффициент, учитывающий влияние всех переменных факторов.

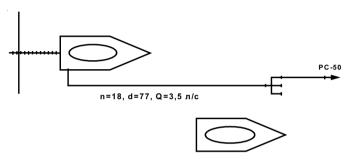
$$K = K_c \cdot K_H = 2.0 \cdot 1.1 = 2.2.$$

7. По формуле (16.1) определяем время боевого развертывания.

$$au_{6.p.} = K \cdot (0.32 \cdot A \cdot L \cdot (\beta_1 + \beta_2 \cdot \beta_3) + au_{B}) = 2.2 \cdot (0.32 \cdot 1.65 \cdot 260 \cdot (0.2 + 0.8 \cdot 1.47) + 23) = 465 c = 7.8 мин.$$

Задача 16.2: Время года — зима, время суток — ночь, место пожара — 10-й этаж административного здания, высота этажа — 3 м, расстояние от реки до места пожара — 300м, характеристика участок местности — горизонтальный, высота снежного покрова — 30 см, средний возраст пожарных — 39 лет, освещение (естественное, искусственное) — отсутствует. На тушение пожара прибыло 2 отделения на АЦ-40(130) 63Б с

боевым расчетом на каждой по 4 чел, включая командира отделения и волителя.


Первое отделение проводит боевое развертывание на местности, второе отделение в здании. Первая автоцистерна находится у водоема, вторая — у здания. Напорные рукава в количестве 18 штук для прокладки магистральной линии находится у водоема.

Требуется: 1. Подать на ликвидацию горения ствол "Б".

2. Определить оптимальное время боевого развертывания.

Решение:

1) Выбираем схему насосно-рукавной системы:

2) Определяем количество рукавов в магистральной линии:

$$N_{M} = K_{M} \cdot L/I_{D} = 1.2 \cdot 300/20 = 18$$
 рукавов.

3) Определяем продолжительность боевого развертывания на горизонтальном участке местности:

$$au_{6.p.} = K \cdot (0.32 \cdot A \cdot L_{_{M}} \cdot (\beta_{1} + \beta_{2} \cdot \beta_{3}) + au_{_{B}}) = 3.88 \cdot (0.32 \cdot 2.44 \cdot 360 \cdot (0.30 + 0.70 \cdot 1.47) + 18) = 1800 \ c = 30 \ \text{мин}.$$

4) Определение значения коэффициента А, учитывающего сколько раз в среднем пожарный преодолевает расстояние L:

$$A = 1/N_{k/c} (1 + L_{M}) - 1 + 20/L_{M} (N_{n.c} - 1) = 1/3 \cdot (1 + 360/40) - 1 + (20/360) \cdot (3 - 1) = 2,44.$$

5) Определяем значения коэффициентов β_1 и β_2 , учитывающие долю расстояния преодолеваемую пожарными без ПТВ и с ПТВ:

$$\beta_1 = (A - 1)/(2 \cdot A) = (2,44 - 1)/(2 \cdot 2,44) = 0,3$$

 $\beta_2 = 1 - \beta_1 = 1 - 0,3 = 0,7.$

6) Определяем значение коэффициента β_3 , учитывающий влияние массы ПТВ:

$$\beta_1 = 1,47.$$

7) Определяем $\tau_{_B}$ время установки пожарной машины на водоисточник:

$$\tau_{\rm B} = 18 {\rm c.}$$

8) Определяем значение коэффициента $K_{\rm c}$, учитывающий влияние снежного покрова:

$$K_c = 2, \bar{2}$$
.

9) Определяем значение коэффициента $K_{_{\rm H}}$, учитывающий влияние времени суток (ночь без освещения):

$$K_{u} = 1.6.$$

10) Определяем значение коэффициента $K_{_{\rm B}}$, учитывающий влияние возраста пожарных:

$$K_{p} = 1,1.$$

 Определяем значение коэффициента К, учитывающий влияние всех учтенных переменных факторов на время боевого развертывания:

$$K = K_c \cdot K_H \cdot K_R = 2,2 \cdot 1,6 \cdot 1,1 = 3,88.$$

12) Определяем продолжительность боевого развертывания в здании путем подъема напорных рукавов с помощью спасательной веревки:

$$au_{6,p}$$
 = K [4,51 · eta_3 · h_3 (N_3 – 1)] = 1,76 [4,51 · 1,37 · 3(10 – 1)] = 294 c= 4.9 мин.

13) Определяем значение коэффициента β_3 , учитывающий влияние массы ПТВ:

$$\beta_3 = 1,37.$$

14) Определяем значение коэффициента, учитывающего влияние всех учтенных переменных факторов:

$$K = K_{H} \cdot K_{R} = 1.6 \cdot 1.1 = 1.76.$$

15) Определяем продолжительность боевого развертывания в здании путем опускания напорной линии вниз:

$$au_{6,p} = K (4,43 \cdot \beta_3 \cdot h_9 \cdot (N_9 - 1)) = 1,76 \cdot (4,43 \cdot 1,37 \cdot 3 \cdot (10 - 1)) = 289 c = 4,8 мин.$$

 Определяем количество рукавов в рабочей линии при прокладке ее по маршам лестничной клетки:

$$N_p = (3 \cdot K_M \cdot (N_9 - 1)h_9)/l_p = (3 \cdot 1, 2 \cdot (10 - 1) \cdot 3)/20 = 5$$
 pykabob.

20) Определяем отношение $L_p/N_{\rm n.c.}$:

$$L_p/N_{\pi,c} = 100/3 = 33 < 60.$$

21) Определяем коэффициент A, учитывающий сколько раз в среднем пожарный преодолевает максимальное расстояние L:

$$A = 1$$
.

21) Определяем коэффициенты β_1 и β_2 , учитывающие долю расстояния, преодолеваемую пожарными без ПТВ и с ПТВ:

$$\beta_1 = 0$$

$$\beta_2 = 1$$

22) Определяем продолжительность боевого развертывания в здании при прокладке напорной рукавной линии по маршам лестничной клетки:

$$au_{6,p} = k \cdot (4,1A \cdot h_{_{9}} \cdot h_{_{9}} \cdot (N_{_{9}} - 1) \cdot (0,5\beta_{1} + \beta_{2} \cdot \beta_{3})) = 1,76 \cdot (4,1 \cdot 1 \cdot 3) \cdot (10 - 1) \cdot (0,5 \cdot 0 + 1 \cdot 1,37)) = 4,5$$
 мин.

Вывод: продолжительность боевого развертывания составляет:

- на горизонтальном участке местности $\tau_{\text{б.p}} = 25,0$ мин;
- в здании при подъеме напорных рукавов с помощью спасательной веревки $\tau_{\text{б,p}}$ = 4,9 мин;
 - в здании при опускании напорных рукавов $\tau_{6,p} = 4,8$ мин;

- в здании при прокладке напорных рукавов по маршам лестничной клетки $\tau_{6,p} = 4,5$ мин.

Оптимальность насосно-рукавных систем (ОНРС)

Под оптимальностью насосно-рукавной системы подразумевается, что при минимуме сил и средств и времени получено при данных условиях максимально возможное количество огнетушащих веществ.

при
$$C_{min}$$
 ОНРС C_{max}

При
$$Q_{_{\mathrm{H}}} \geq Q_{_{\mathrm{T}p}}; \ H_{_{\mathrm{H}}} \geq H_{_{\mathrm{T}p}}; \ n_{_{p}}{}^{\varphi} \geq n_{_{p}}{}^{^{\mathrm{T}p}}; \ N_{_{\mathrm{CT}}}{}^{\varphi} \geq N_{_{\mathrm{CT}}}{}^{^{\mathrm{T}p}} \\ \sum N \pi T B_{_{i}}{}^{\varphi} \geq \sum N \pi T B_{_{i}}{}^{\mathrm{T}p}, \qquad \qquad i = 1...n$$

Параметры ПТВ должны соответствовать техническим характеристикам и положенности.

Условия, обеспечивающие оптимальность насосно-рукавных систем: правильно определенный напор насоса пожарного автомобиля, требуемого количества автомобилей и ПТВ для работы насосно-рукавной системы.

Это можно выполнить с использованием:

- формул гидравлики;
- таблиц, составленных по формулам гидравлики;
- методов приближенного расчета;
- по номограммам

Предельное расстояние определяют по формуле:

$$l_{np} = (H_{H} - (H_{np} \pm Z_{M} \pm Z_{np})/SQ^{2})20,$$
 (16.14) где l_{np} — предельное расстояние, м;

 $H_{_{\rm H}}$ – напор на насосе, м; $H_{_{\rm np}}$ – напор у разветвления, лафетных стволов и пеногенераторов, м (потери напора в рабочих линиях от разветвления в пределах двух, трех рукавов во всех случаях не превышает 10 м, поэтому напор у разветвления следует принимать на 10 м больше, чем напор у насадка ствола, присоединенного к данному разветвлению):

Zм - наибольшая высота подъема (+) или спуска (-) местности на предельном расстоянии, м;

Zпр — наибольшая высота подъема или спуска приборов тушения (стволов, пеногенераторов) от места установки разветвления или прилегающей местности на пожаре, м:

- S сопротивление одного пожарного рукава;
- О суммарный расход воды одной наиболее загруженной магистральной рукавной линии, л/с;
 - SQ² потери напора в одном рукаве магистральной линии, м.

Полученное расчетным путем предельное расстояние по подаче огнетушащих средств, следует сравнить с запасом рукавов для магистральных линий, находящихся на пожарном автомобиле, и с учетом этого откорректировать расчетный показатель. При недостатке рукавов для магистра-

льных линий на пожарном автомобиле необходимо организовать взаимодействие между подразделениями, прибывшими к месту пожара, обеспечить прокладку линий от нескольких подразделений и принять меры к вызову рукавных автомобилей.

Задача 16.3: На тушение пожара в производственном здании требуется подать 28 п/c воды. В распоряжении РТП имеются пожарные автонасосы AH-40(130)127A, полностью укомплектованные личным составом и пожарно-техническим вооружением. Расстояние от места установки рукавного разветвления до водоисточника 1600 м. Уклон местности равномерный, его высота — 16 м, максимальный подъем пожарных стволов в здании — 8 м.

Необходимо определить количество отделений на пожарных автонасосах для подачи воды на тушение пожара и составить схему их расстановки.

Решение:

- 1) Принимаем способ перекачки из насоса в насос по двум магистральным пожарным рукавным линиям диаметром 77 мм.
- 2) Принимаем схему подачи стволов от головного автомобиля: магистральные линии диаметром 77 мм, рабочие линии диаметром 66 мм по 2 напорных пожарных рукава в каждой, ручные пожарные стволы A с диаметром насадки 19 мм (см. схему).
- 3) Определяем потери напора в рабочей рукавной линии и на насадке ствола:

$$h_1=h_{p\pi}+H_{\text{нас}}=n_1Sq^2+S_1q^2=0,034\cdot72+0,634\cdot72=34,4$$
 м, где $h_{p\pi}-$ потери напора в рабочей рукавной линии, м;

 ${
m H}_{
m hac}$ — потери напора на насадке ручного ствола A с диаметром насадка 19 мм, м;

S – сопротивление одного напорного рукава диаметром 66 мм;

n₁ - количество напорных рукавов в одной рабочей линии, шт.;

S₁ — сопротивление насадка ручного ствола A с диаметром насадка 19 мм;

q – расход воды из ручного ствола A, л/с.

4) Определяем предельное количество напорных пожарных рукавов в магистральной лини от головного автонасоса до места пожара (без учета потерь на подъем местности, так как они здесь незначительны):

$$n_2 = (H_H - h_1 - Z_{cr})/(S_2Q^2) = (90 - 34.4 - 8)/(0.015 \cdot 142) = 16 \text{ m}$$

 S_2 — сопротивление одного напорного рукава диаметром 77 мм;

 Z_{cr} – высота подъема стволов, м;

 Q^{-} расход воды по адной магистральной линиидля выбранной схемы, л/с;

Н_н – допускаемый напор на насосе автонасоса, м (принимаем 90 м).

5) Определяем количество напорных пожарных рукавов в одной магистральной линии от водоисточника до места пожара:

$$n_3 = 1.2L/l_p = 1.2 \cdot 1600/20 = 96 \text{ m}$$

L – расстояние от места пожара до водоисточника, м;

 1_{p} — средняя длина одного пожарного рукава ,м;

1,2 - коэффициент, учитывающий неровности местности.

6) Определяем предельное количество рукавов в одной рукавной

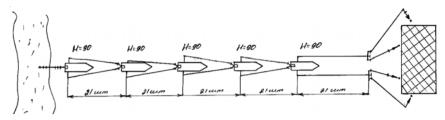


Рис. 16.2

линии между двумя автонасосами, установленными для перекачки:

$$n_4 = (H_H - H_\Pi - Z)/(S_2Q^2) = (90 - 10 - 16)/(0.015 \cdot 142) = 21 \text{ mT.},$$

где $H_{\rm \scriptscriptstyle H}-$ напор на конце магистральной линии ступени перекачки, м (принимаем $10\,$ м);

Z - перепад местности, м.

7) Определяем количество ступеней перекачки:

$$N_{cr} = (n_3 - n_2)/n_4 = (96 - 16)/21 = 3.8.$$

Принимаем 4 ступени перекачки.

8) Определяем требуемое количество пожарных автонасосов для подачи воды перекачкой:

$$N_{aH} = N_{cT} + 1 = 4 + 1 = 5$$
 автонасосов.

9) Определяем фактическое количество напорных пожарных рукавов в одной магистральной линии от головного автомобиля до места пожара:

$$n_{\phi} = n_{\pi} - N_{cr} \cdot n_4 = 96 - 4 \cdot 21 = 12 \text{ mt}.$$

10) Определяем требуемое количество рукавов для прокладки магистральных линий (без учета резерва):

$$N_p = n_\pi n_3 = 2 \cdot 96 = 198 \text{ mt.}$$

где n_{π} — количество магистральных линий.

11) Определяем требуемое количество автонасосов по доставке напорных пожарных рукавов для прокладки рукавных линий:

$$N = N_p/n_{aH} = 198/33 = 6$$
 автонасосов,

где $n_{\rm af}$ — количество рукавов диаметром 77 мм, вывозимых на одном пожарном автонасосе, шт.

Задача 16.4: Пожар произошел на сельскохозяйственном объекте, для тушения которого необходим расход воды 28 л/c. В распоряжении РТП имеются пожарные автомобили АН-40(130)-127A, полностью укомплектованные личным составом и пожарно-техническим вооружением. На расстоянии 2000 м от места пожара (места установки разветвления) имеется водоисточник с достаточным количеством воды. Максимальный подъем стволов — 6 м.

Используя таблицы 16.4, 16.5, требуется определить необходимое количество пожарных отделений для успешной организации тушения пожара.

- 1) Выбираем способ подачи воды к месту пожара: перекачка из насоса в насос по двум магистральным линиям.
 - 2) Выбираем схему подачи воды от головного пожарного автомобиля:

Таблица 16.4

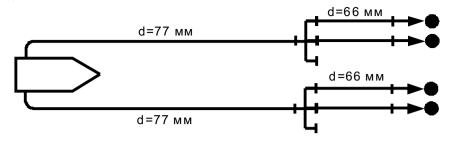
Напор на насосе в зависимости от длины магистральных рукавных линий и схем боевого развертывания

	вола цва 270*		77	17	46	52	65	65	71	77	84	90	96	102	1				1	1	1	1		1	
	Четыре ствола РС-50 и два ствола РС-70*		99	16	54	89	82	96	1	1	1	1	1	_	1	1	1	1	_	1	1	_	1	_	
			22	15	43	47	50	53	99	09	63	99	70	73	92	- 62	83	98	68	93	96	66		_	
	Шесть стволов РС-50**		7			_					_	H	7	7	<i>L</i>	7	~	8	8	6	6	6	Ľ	_	
	шес		99	14	47	55	62	20	77	85	92	100	I	1	1	1	1	1	1	1	1	1	1	_	
	гвола -70		77	13	33	36	39	42	45	48	51	54	27	09	63	99	69	72	75	28	81	84	87	06	
	Два ствола РС-70		99	12	42	49	99	63	70	77	84	91	86	_	-	1	1	1	1	1	1	1	1	1	
	вола 70*	иний	77	11	34	35	37	38	40	41	42	44	45	46	48	49	50	52	53	54	99	22	59	09	ИИ
о стволов	Два ствола РС-70*	зальных л	99	10	38	42	45	49	52	99	59	63	29	20	73	77	80	83	87	06	63	96	100	_	ные пин
Количество стволов	Четыре ствола РС- 50 и один РС-70	Диаметр магистральных линий	77	6	62	78	93	I	I	ı	I	I	I		_	I	I	I	1	_	_	I	I	-	Примечания: **В этих спулаву прокрадываются две магистральные динии
	a PC-50 PC-70			8	46	52	65	9	71	77	84	06	96	102	_	ı	ı	ı	1	_	_	-	ı	_	BAINTER
	Два ствола РС-50 и один РС-70		99	7	54	89	82	96	ı	ı	ı	ı	ı	-	1	ı	ı	ı	I	ı	1	ı	ı	_	ОКПАЛЫ
	вола 50		2.2	9	43	47	90	43	99	09	63	99	70	71	92	62	83	98	68	63	96	66	1	_	אםא ווג
	Три ствола РС-50		99	5	47	22	62	70	77	85	92	100	ı	-	-	1	1	1	1	I	-	ı	1	_	N C IIV
	гвола -50		77	4	41	43	44	46	47	49	50	52	53	25	99	58	59	09	62	63	9	99	89	69	**В эти
	Два ствола РС-50		99	3	43	46	90	S 3	99	09	63	99	70	73	9/	so	83	98	06	66	96	100	1	_	, :впне
	Количество рукавов в магистраль-	ной линии		2	2	4	9	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	Полива
	≅ [/:			1	1	2	3	4	S	9	7	∞	6	10	11	12	13	14	15	16	17	SI	19	20	

1. Радиус компактной части струи 17-18 м. 2. Диаметр насадка принят для стволов: PC-50 (13 мм), PC-70 (19 мм), PC-70* (25 мм). 3. Расход воды из стволов $d_{\rm H}=13$ мм — 3,5 л/с ; $d_{\rm H}=19$ мм — 7,0 л/с ; $d_{\rm H}=25$ мм — 10,0 л/с.

Расстояние межлу насосами при перекачке волы по прорезиненным рукавам из насоса в насос

	Laccin	гасстояние между насосами при перекачке воды по прорезиненным рукавам из насоса в насос	и при пер	CKAYKE	воды п	о проре	зинен	IbIM py	Kabam	из насо	са в на	202		Ī
	Количество стволов,	Cyone and allegan	OT ON OTHER			Нап	ор на на	сосе, уст	ановлен	ном для г	Напор на насосе, установленном для перекачки,	, M		
윈	2	перекачке по напорным	рукавов	20	55	09	65	20	75	80	85	90	92	100
	го автомобиля, и диаметр их насадков	рукавным линиям	WW		(Ko	пичество	рукавов	и матер	иальной	і линии м	ежду нас	Количество рукавов и материальной линии между насосами, шт.)	T.)	
-	7 OTTO DO 50	П. описк	99	23	56	59	32	35	38	41	44	47	20	53
-	2 CIBOMA FC-30	110 однои линии	77	53	09	99	73	80	98	93	100	106	113	120
		По оппой пипи	99	10	11	13	14	15	17	18	19	21	22	23
r	7 2 cms cm DC 50	но однои линии	77	23	56	56	32	35	38	41	44	47	90	53
4	3 CIBOMA F C-30	По прим пишем	99	42	47	52	27	63	89	73	62	84	68	94
		по двум линиям	17	68	100	111	122	133	144	155	100	117	188	200
		По ощой шиши	99	2	9	7	7	8	6	6	10	11	12	12
,	2 ствола РС-50 и	по однои линии	77	12	14	15	17	18	20	21	23	25	36	82
O	1 ствол PC-70	По пин ини	99	22	25	27	30	33	36	36	41	44	47	20
		по двум линиям	77	90	99	62	89	75	81	87	93	100	106	112
	1 OF DC 50 m	По одной линии	77	5	5	9	9	7	8	8	9	10	10	11
4	1 cm or DC 70	По типу	99	8	10	11	12	13	14	15	16	17	18	20
	1 CIBOJI I C-70	но двум линиям	77	20	22	25	27	30	32	35	37	41	42	45
		По оппой пипи	99	5	9	7	7	8	6	6	10	11	12	12
V	7 cmc on DC 70*	но однои линии	77	12	14	15	17	18	20	21	23	25	26	28
·) 2 CIBOJIA FC-70	По прин иниви	99	23	56	29	32	35	38	41	44	47	50	53
		тго двум линиям	77	53	09	99	73	80	98	93	100	106	113	120
		По одной линии	77	5	9	9	7	8	8	6	10	10	11	12
9	6 2 ствола РС-70	По прим пиниви	99	6	10	11	13	14	15		17	19	20	21
		тго двум линиям	77	21	23	26	29	31	34		39	42	44	47
		По одной линии	77	5	9	7	8	8	6	10	11	11	12	13
7	7 6 стволов PC-50	По прим пиниви	99	10	26	13	14	15	17	18	21	22	22	23
		тго двум липиям	77	23		29	32	35	38	41	44	47	20	53
∞	4 ствола РС-50 и 2 ствол РС-70	По двум линиям	77	13	15	16	18	20	21	23	25	26	28	30


Примечания: 1. Напор на входе в последующий насос при перекачке равен 10 м.

2. При определении расстояния между насосами, работающими в перекачку, подъем местности не учитывается.

3. Напор на насосе головного автомобиля определяется по таблице

Диаметр насадка принят для стволов: PC-50 (13 мм), PC-70 (19 мм), PC-70* (25 мм).

- 3) По таблице 16.4 на пересечении граф. 7 и 17 при напоре на насосе $(H_{\rm H})$ 84 м определяем максимальное количество рукавов $(N_{\rm I})$ в одной магистральной рукавной линии от головного пожарного автомобиля до места пожара (места установки разветвления), равное 14 шт. Предварительно из $H_{\rm H}=90$ м вычитаем высоту подъема стволов, равную 6 м.
- 4) Определяем количество пожарных напорных рукавов в одной магистральной линии от места пожара (места установки разветвления) до волоисточника:

$$N = 0.6 \cdot L = 0.06 \cdot 2000 = 120 \text{ mt}.$$

где L - расстояние от места пожара до водоисточника, м.

- 5) По таблице 16.5 при $H_{_{\rm H}}=90$ м на пересечении граф 4 и 13 определяем количество рукавов (N_2) между автонасосами в одной магистральной линии, равное 26 шт.
- 6) Определяем общее количество пожарных автонасосов для подачи воды перекачкой:

$$N_{AH} = (N - N_1)/N_2 + 1 = (120 - 14)/26 + 1 = 5,1 \approx 6$$
 автонасосов.

7) Определяем необходимое количество автонасосов для доставки пожарных напорных рукавов диаметром 77 мм:

$$N_{AH} = 2N/n_{AH} = 240/20 = 12$$
 автонасосов,

где $n_{\text{ан}}$ — количество пожарных напорных рукавов, вывозимых на автонасосе АН-40(130)-127A (см. табл. 5.2)

Выводы: Для организации подачи воды на тушение сельскохозяйственного объекта потребуется 12 пожарных автонасосов.

Решение предыдущей задачи с использованием табл. 16.6, 16.7.

- 1) Способ подачи воды к месту пожара и схему подачи стволов от головного пожарного автомобиля берем тот же самый, что и в предыдущей задаче.
- 2. По табл. 16.7 п. 8 подбираем схему от головного насоса до места пожара и по формуле данной в п. 8 определяем количество рукавов d=77 мм в магистральной линии, по формуле

$$n_2 = 0.33 \cdot 84 - 12 = 14 \text{ рук.}$$

3) По формуле из табл. 2.3 п. 6 Определяем количество рукавов диаметром 77 мм между ступенями перекачки, при расходе по одной магистральной линии $14\ \pi/c$.

$$n_{ct} = 0.34 \cdot H_c - 5 = 0.34 \cdot 90 - 5 = 26 \text{ m}.$$

Габлица 16.6

Определение напоров на насосе и количество рукавов между ступенями перекачки при подаче огнетушащих веществ

2,7H-27 7H-70 4H-40 4H-40 09-H9 3H-300,25N+10 0,14N+10 0,17N+10 0.25N + 100,33N+10 0,37N+ 10 Ť 2,3H-23 20H-200 ,3H-13 0.43H-45H-50 ,1H-11 0.7H-79.H9.0 0,4H-40.27H-32H + 200.8H-80.3H-37H-70Диаметр рукавов, мм (прорезиненные) 0,05N+10 0.14N+100,43N+10 0.77N+100.2N+100.5N + 100.9N + 101,3N+101,4N+10.7N+10 2,3N+102,5N+10 3,3N+10 3,7N+10 ,3H-13 5,5H-55 .9H-19 0.34H-50,2H-20.19H-29-H9'0 D,15H-1 0.5H-50.3H-30,1H-1 перекачкой 0.76N + 100.18N + 10,7N+ 10 0.5N + 103.3N + 105.3N+10 6.7N + 1010N + 102N + 103N + 105N+10 0,26H-2,6 0.15H-1.5 0,13H-1,3 0.22H-2.20,009H-1 2,3H-23 .3H-13 9-H9.0 1 ,67N+10 0,43N+100.47N + 103,8N + 104.5N + 106.7N + 107.7N + 1011N+10 Расход по одной линии 10,5 30 18 24 9 4 19 21 No ⊓/⊓ ≊ 9 13 14 12 9 ∞ 6 \equiv 4

.6H-16

H-10 0.7H-7

,25N+ 10

N+10

|4N+10

0,44H-4 0,34H-3

2.5N+10

3N + 10

2,3N+107N+10

2N + 10

9-H9.0 0,5H-5 0.4H-4

2H-20 1,2H-12 0.8H-8

0.5N+10

0.2H-20,15H-1

4,8N+10 6,7N+10

35 45

15 17 18 19 20

40

16

50 55

9

21

22 24

9 70 85

0.6N + 100.8N+10

Примечания: 1. Подъем местности не учитывается.

- При подаче огнетушащих веществ по двум линиям расчет производится по одной наиболее нагруженной.
 Напор на насосе не должен превышать его технической возможности.

3,3H-120 150 1) Диаметр рукавов М. Л, мм. 2) Требуемый напор Н, м 3) Кол-во рукавов п, шт. 40+0,43n 0,33H-12 40+0,2n 1,25H-500,25H-45 40+0,8n 40+1,6n 36+0,8n 5H-200 2,3H-90 0,6H-25 88 Напор на насосе головной пожарной машины при подаче водяных стволов 40+0,75n 40+1,6n 0,33H-13 0,33H-12 21+1,5n 0,67H-14 50+0,8n 1,25H-6 50+1,6n 0,43H-221,3H-53 50+2,3n 0,6H-2550+5n 40+6n 0,16H-736+3n 0,2H-1040+3n 0,6H-31 40+3.7n40+1,7n0,6H-240,3H-11 40+6,7n 0,15H-6 40+14n 0,07H-3 36+6,7n 0,15H-5 21+3,4n 50+1,7n 0,6H-2950+3,7n 0,27H-14 50+5n 0,2H-10 0.3H-699 u'H'n M'E∤ Ξ Ξ Η Ξ Ξ Ξ п Ξ п Ξ П п П п п П Η П Η п ₽ ф, мм 13 13 19 13 25 28 32 38 13 13 19 25 Вид схемы Ç 2 2 윈듣 α 3 4 S 9

Окончание табл. 16.7

9								Окончание таол. 16.7
25 H	~		10	Н	-	_	36+3n	36+0,3n
25 H				u	I	ı	0,33H-12	3,3H-120
28 H H-52 32 H 67H-50 38 H 67H-50 38 H 67H-50 40 H H 67H-50 58 H 67H-50 58 H 67H-10 58 H 67H-11 58 H			3.5	Н	I	1	52+n	52+0,1 n
28 H 54+1,4n			73	n	-	_	H-52	10H-520
20			٥٥	Н	1	1	54+1,4n	54+0,14 n
32 H			07	u	1	_	0,7H-39	ZH-385
38	0	1	33	Н	1	_	56+2,5n	56+0,25n
38 H 6345n 40 H 0,2H-12 28 H 66457n 28 H 66457n 28 H 66457n 28 H 66457n 38 H 66457n 40 H 66457n 38 H 66457n 40 H 66457n 40 H 66457n 40 H			76	n	_	_	0,4H-22	4H-224
30 n - 0,2H-12 40 H - - - 40 H - - - - 25 H - - 60+3,7n - 28 H - - 66+57n - 28 H - - 0,18H-11 32 H - - - 40 H - - - 40 H - - - 40 H - - - 25 H - - - 28 H - - <t< td=""><td></td><td></td><td>3.0</td><td>Η</td><td>1</td><td>_</td><td>63+5n</td><td>63+0,5 n</td></t<>			3.0	Η	1	_	63+5n	63+0,5 n
177 40 H -			90	u	1	-	0,2H-12	2H-126
77			70	Н	_	_	-	u 9,0+89
77 77 25 H - - 6043,7n 28 H - - 0,27H-16 28 H - - 66+57n 32 H - - 0,18H-11 38 H - - - 40 H - - - 40 H - - - 25 H - - - 28 H - - - 40 H - - - 25 H - - - 28 H - - - 40 H - -			}	u	-	_	-	1,7H-113
28 H — — — — — — — — — — — — — — — — — —		t.t.	35	Н	1	_	60+3,7n	e0+0,37 n
28 H — — — — — — — — — — — — — — — — — —	-		67	u	1	_	0,27H-16	2,7H-162
28 H — — — — — — — — — — — — — — — — — —	2		٥٥	Η	_	_	ee+57n	u/2,0+99
28 H - - - - 32 H - - - - 38 H - - - - 40 H - - - - 25 H - - - - 28 H - - - - 28 H - - - - 40 H - - - - 1 1 - - - - 1 1 - - - - 1 1 - - - - - 1 1 - - - - - - 1 1 -			70	u	_	_	0,18H-11	1,8H-110
77 H — — — — — — — — — — — — — — — — — —			٥٥	Н	1	_	1	54+0,6 n
77 H — — — — — — — — — — — — — — — — — —			207	n	I	-	-	1,7H-90
38 H — — — — — — — — — — — — — — — — — —		7.7	23	Н	Ι	_	_	26+n
38 H — — — — — — — — — — — — — — — — — —	-	Į.	26	u	_	_	_	95-H
77	-		38	Η	_	_	_	63+2n
77 25 H - - - 1 1 - - - - 2 1 - - - - 2 1 - - - - 3 1 - - - - 4 1 - - - - 4 1 - - - - 4 1 - - - - 5 1 1 - - - 6 1 1 - - - 7 1 1 - - - 8 1 1 - - - 9 1 1 - - - 1 1 1 - - - 1 1 1 - - - 1 1 1 - - - 1 1 1 - - - 1 1 1 - - - 1 1 1 - - - 1 1 1<			90	u	_	_	_	0.5H-31
25 H			40	Η	-	_	_	68+2,5n
25 H			1	u	1	-	_	0,4H-27,2
28 H		kt	35	Н	1	_	1	52+0,8n
28 H		<u> </u>	7	u	ı	1	1	1,25H-65
20 n	-	, f	٥٢	Н	1	1	1	54+1,3n
- H	12		707	u	_	_	_	0,77H-42
l u		1		Н	ı	ı	1	56+2,3n
		· 江	32	п	I	1	I	0,43H-24

Примечания к табл. 16.7: 1. Высота подъема стволов не учитывается. 2. В рабочих линиях принято по 3 рукава. 3. Напор на стволах с диаметром насадка принят: 13 мм — 35 м, 19 мм — 30 м, 25 мм — 25 м, для лафетных стволов — 60 м. 4. Напор на насосе не должен превышать его технической возможности.

4) Определяем количество напорных рукавов в одной магистральной линии от головного автомобиля до водоисточника:

$$N = 0.06 L - n_2 = 0.06 \cdot 2000 - 14 = 106 pyk.$$

5) Определяем общее количество автомобилей для подачи воды перекачкой.

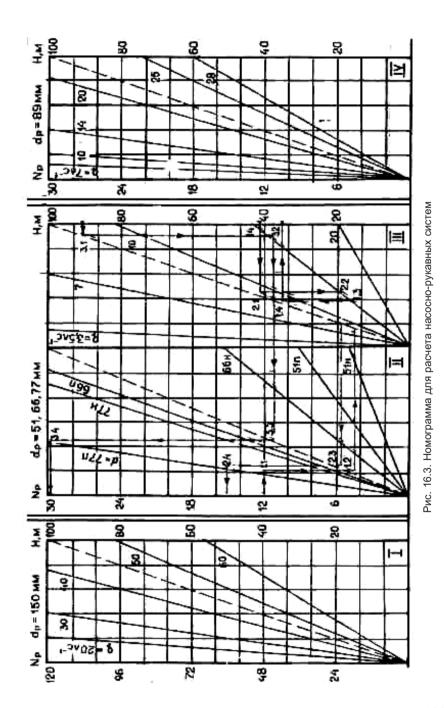
$$N_{AH} = N/n_{ct} + 1 = 106/26 + 1 = 5,1$$
 (принимаем 6 автонасосов).

6) Определяем необходимое количество пожарных автомобилей для доставки пожарных напорных рукавов d=77 мм.

$$N_{AH}^p = 2N/n_{AH} = 240/20 = 12$$
 автомобилей.

Использование номограммы для расчета насосно-рукавных систем

На рис. 16.3 дана номограмма для расчета насосно-рукавных систем, которая позволяет определить потери в рукавных линиях, требуемый напор на насосах пожарных машин при различном типе и количества напорных пожарных рукавов между пожарными машинами при подаче огнетушащих веществ перекачкой.


На номограмме даны следующие обозначения: H — напор, M; N_p — количество напорных пожарных рукавов, шт.; d=77 π — прорезиненный напорный пожарный рукав диаметром 77MM; d=66 θ — непрорезиненный пожарный рукав диаметром 66 θ M; θ — расход огнетушащего вещества, θ л/с. Квадранты I, II, III — для напорных рукавов диаметром 51, 66, 77 θ M; квадрант IV — для напорных рукавов диаметром 89 θ M.

Для единообразия расчетов расходы огнетушащих веществ из пожарных стволов при соответствующих напорах у них сводим в табл. 16.8.

Таблица 16.8

Тип ствола	Диаметр насадка, мм	Напор у ствола, м	Расход, л/с
PC-50	13	35	3,5
PC-70	19	31	7
	25	21	10
Лафетный ствол	25	50	15
•	28	50	19
	32	50	25
Лафетный ствол	38	50	35
	50	50	60
HPT-5	_	60	5
HPT-10	_	60	10
HPT-20	_	60	20
PB-12	_	60	12
ГПС-600	_	60	6
СВП	_		
СВП (Э)-1	_	60	4
ГПС-200	_	60	2
ГПС-2000	_	60	20
СВП (Э)-8	_	60	16
СВП (Э)-4	_	60	8

При подаче стволов на высоту к величине H, полученной по номограмме, следует прибавить высоту подъема.

Задача 16.5. На тушение пожара требуется подать четыре ствола "А" с диаметром насадка 19 мм и общим расходом воды 28 л/с. Расстояние (L) от водоисточника до места установки разветвления 200 м, в каждой рабочей линии по четыре рукава. Определить напор на насосе пожарной машины при подаче воды по двум магистральным линиям из прорезиненных рукавов диаметром 77 мм.

Решение:

Требуемый напор на насосе пожарного автомобиля определяется по формуле

$$H_{_{\rm H}}=h_{_{_{\rm M.R.}}}+h_{_{\rm p.n.}}+H_{_{\rm cr}},$$
 где $h_{_{_{\rm M.R.}}},h_{_{\rm p.n.}}-$ потери напора в магистральных и рабочих линиях, м; $H_{_{\rm cr}}-$ напор у ствола, м.

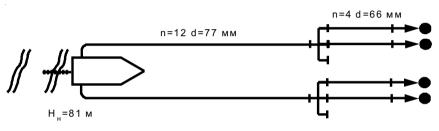


Рис. 16.4

По таблице 16.8 находим $q_{cr}=7$ л/с; $H_{cr}=31$ м для ствола "А" с диметром насадка 19 мм. Требуемое количество пожарных напорных рукавов в магистральной линии будет равно

$$N_p = 0.06 \cdot 200 = 12 \text{ m}\text{T}.$$

Для определения потерь напора в магистральной линии по номограмме из точки 12 шкалы N_p в квадранте II, соответствующей двенадцати напорным пожарным рукавам, проводим линию, параллельную горизонтальной шкале, до пересечения с наклонной линией с цифрой 77п (точка 1.1), соответствующей прорезиненным напорным пожарным рукавам диаметром 77 мм. Из точки 1.1 проводим линию, параллельную вертикальной шкале, до пересечения с пунктирной линией (точка 1.2). Из точки 1.2 проводим линию, параллельную горизонтальной шкале, до пересечения с наклонной прямой с цифрой 14 в квадранте III (точка 1.3), что соответствует 14 л/с (так как по одной магистральной линии расход воды составляет 14 л/с).

Из точки 1.3 проводим прямую линию, параллельную вертикальной шкале, до пересечения с пунктирной линией (точка 1.4). Из точки 1.4 проводим прямую линию, параллельную горизонтальной шкале, до пересечения со шкалой H, на которой и находим потери напора в магистраль-

ной линии — 35 м.

По методике, изложенной выше, определяем потери напора в рабочей линии при расходе 7 л/с, которые равны 15 м. (Расчет ведется по одной, наиболее нагруженной рукавной линии).

Суммируя полученные значения, определим требуемый напор на насосе пожарного автомобиля, который равен 81 м.

Задача 16.6. На тушение разлитого нефтепродукта необходимо подать генератор ГПС-600. В линии, проложенной от места установки пожарной машины до позиции ствольщика, 8 рукавов

Определить требуемый напор на насосе пожарного автомобиля для подачи огнетушащего вещества, если в рукавной линии могут быть использованы напорные пожарные рукава диаметром 66 и 77 мм, как прорезиненные, так и непрорезиненные.

Решение:

По таблице 16.8 находим: $q_{cr} = 6 \text{ л/c}$; $H_{cr} = 60 \text{ м}$.

По методике, изложенной выше, по номограмме в квадрантах II, III определяем потери напора в рукавной линии для различных рукавов при расходе раствора из генератора ГПС-600 6 л/с, которые равны: $66\pi=13$ м; $66\pi=25$ м; $77\pi=5$ м; $77\pi=12$ м.

Прибавляя к полученным величинам напор у ствола, равный 60 м, получим требуемый напор на насосе пожарного автомобиля для рукавов диаметром $66\pi=73$ м; $66\pi=85$ м; $77\pi=65$ м; $77\pi=72$ м.

Задача 16.7. На тушение пожара на высоте 20 м необходимо подать четыре ствола "А" с диаметром насадка 19 мм. Водоисточник расположен на расстоянии 1200 м от места установки разветвления. В рабочих линиях по четыре напорных прорезиненных рукава диаметром 66 мм. В двух магистральных линиях рукава прорезиненные диаметром 77 мм. Требуется рассчитать насосно-рукавную систему при подаче воды перекачкой.

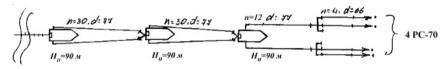


Рис. 16.5

Решение:

По номограмме определяем потери напора в рабочей линии при расходе 7 π/c , которые будут равны 6,5 м.

Напор у ствола "А" равен 31 м (табл. 16.8). Для определения количества рукавов в магистральной линии до головного пожарного автомобиля проведем предварительные расчеты.

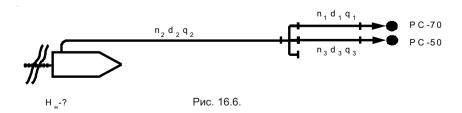
Максимальный напор, развиваемый насосом ПН-40, равен 100 м, из этой величины вычтем потери напора в рабочей линии 6,5 м, на преодоление высоты подъема — 20 м, и напор на насадке у ствола 31 м. Остаток

в 42,5 м можно использовать для преодоления сопротивления в рукавах магистральной линии.

По номограмме определяем количество рукавов в одной магистральной линии до головного автомобиля, для чего из точки 42,5 на шкале Н в квадранте III проводим линию, параллельную горизонтальной оси, до пересечения с пунктирной линией (точка 2.1).

Из точки 2.1 проводим линию, параллельную вертикальной шкале, до пересечения с наклонной прямой с цифрой 14 (точка 2.2). Из точки 2.2 проводим прямую, параллельную горизонтальной шкале, до пересечения с пунктирной линией в квадранте II (точка 2.3). Из точки 2.3 проводим прямую, параллельную вертикальной оси, до пересечения с наклонной линией с цифрой 77п (точка 2.4). Из точки 2.4 проводим линию, параллельную горизонтальной шкале, и на шкале $N_{\rm p}$ находим предельное количество рукавов в одной магистральной линии до головного автомобиля — 15 шт. Максимальное количество рукавов между пожарными машинами, установленными для перекачки, определяем по методике, изложенной выше, только предварительно из H=100 м вычтем 10 м на подпор во всасывающей полости последующего насоса. Начало отчета — цифра 90 на шкале H в квадранте III (точка 3.1, 3.2, 3.3, 3.4) Предельное количество рукавов в одной магистральной линии будет равно 30 шт.

Определяем общее количество напорных пожарных рукавов одной магистральной линии


$$N_{M.J.} = 1200 \cdot 0.06 = 72 \text{ m}.$$

Определяем количество пожарных машин для подачи воды перекачкой

$$N_{_{M}} = \frac{72 - 15}{30} + 1 \cong 3$$

Учитывая, что головная пожарная машина должна быть установлена по возможности ближе к месту пожара, принимаем в одной магистральной линии до головной пожарной машины 12 рукавов, а между пожарными машинами, установленными для перекачки, по 30 рукавов в одной магистральной линии. В связи с изменением количества рукавов в магистральной линии до головной пожарной машины по номограмме уточним требуемый напор на ней (90 м). Результаты расчета насосно-рукавной системы показаны на рис. 16.5.

Рассмотрим третий вариант, который можно использовать непо-

средственно на пожаре.

Напор на насадках стволов взят из табл. 16.8.

Для облегчения расчета обозначим насосно-рукавную схему рис. 16.6.

Приближенный расчет будем проводить с использованием формулы: $h_{\rm n} = Q^2/k$

где k — приближенная величина, обратная сопротивлению напорного прорезиненного рукава, определяется по табл. 16.9.

 d, мм
 51
 66
 77
 89
 150

 k
 7
 30
 70
 200
 2000

Последовательность расчета схемы, проложенной на горизонтальном участке местности:

- выбираем самую нагруженную часть схемы (h_2 , d_2 , q_2 , n_1 , d_1 , q_1 , b_{13});
- по приближенной формуле определяем потери напора в одном рукаве $(h_{\scriptscriptstyle D}=Q^2/k);$
- потери напора в одном рукаве умножаем на количество рукавов $(h = n_p \cdot h_p);$
- к полученной величине потерь прибавляем величину напора на насадке ствола ($H_{\scriptscriptstyle H}=h+H_{\scriptscriptstyle CT}$);
- полученная величина и будет требуемым напором на насосе пожарного автомобиля.

Рис. 16.7. Подача пенообразователя от АПТ во всасывающую полость насоса

Рис. 16.8 Подача пенообразователя от АПТ в емкость для пенообразователя пожарного автомобиля, подающего пенные стволы

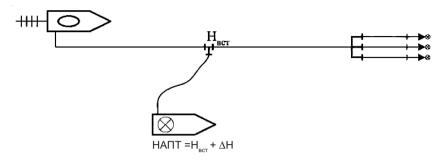


Рис. 16.9

 $H_{ADT} = H_{c} + \Delta H, \Delta H$ определяется по табл. 16.10

Рис. 16.10

При наличии перепада высоты к полученной величине напора на насосе прибавить или отнять от нее величину перепада.

Остановимся на некоторых рекомендациях при составлении насоснорукавных схем.

Особенно тщательным должен быть расчет требуемых напоров на насосах пожарных автомобилей при подаче пены.

Подача пенообразователя от АПТ во всасывающую линию при установке пожарной машины на открытый водоисточник.

Подача пенообразователя от АПТ в магистральную линию (МЛ), подающую воду от насоса пожарного автомобиля, установленного на водо-источник.

Подача пенообразователя от АПТ в напорно-всасывающую линию от пожарного автомобиля, установленного на пожарный гидрант.

Обозначения:

Н_н — напор на насосе, подающем воду (раствор), м;

 H_{cr} — напор на стволе, м;

 $H_{\text{вст}}$ — напор на вставке, м;

 H_r — напор на гидранте, м;

Напт — напор на насосе, подающем пенообразователь.

Для определения требуемых напоров на насосе АПТ, для стандартной вставки, разработаны табл. 16.11 на основе формулы:

Таблица 16.10.

Напор на насосе головного пожарного автомобиля при подаче пенных стволов

원	Вид схемы	Тип ствола	H/N	Диаметр рукав	эв М.Л., мм; требуем! n, шт.	Диаметр рукавов М.Л., мм; требуемый напор Н, м; кол-во рукавов п, шт.	ол-во рукавов
				99	77	68	150
-	2	3	4	5	9	7	80
1		ГПС-600	Н	60+1,2n	60+0,5n	ı	1
	U		u	0,83H-50	2H-120	I	1
	1	СВП(Э)-4	Н	60+2,2n	u+09	1	1
	Ĺ		u	0,45H-27	09-H	_	1
)	CB∏(Э)-8	Η	60+8,7n	60+3,8n	_	1
			u	0.1H-7	0,25H-16	_	I
2	77	$\Gamma\Pi C$ -600	Η	63+5n	63+2,2n	e3+0,6n	1
			u	0,2H-13	0,45H-29	1,7H-105	I
		CB∏(Э)-4	Н	69+8,7n	69+3,8n	u+69	I
			п	0,1H-8	0,26H-18	69-H	1
	<u> </u>	CB∏(Э)-8	Η	_	_	u8'£+28	-
			u	_	-	0,26H-23	ı
3	77	ГПС-600	Н	63+11n	63+5n	63+1,3n	1
	200		u	0,1H-13	0,2H-14	0,77H-48	1
		СВП(Э)-4	Η	_	_	69+2,3n	1
			u	I	ı	0,43H-30	I
4		ГПС-600	Н	60+1,2n	60+0,5n	1	1
	<i>u</i> \		u	0,83H-50	2H-120	I	I

Продолжение табл. 16.10.

8		1	1	ı	62+0,1n	10H-620	62+0,25n	4,3H-270	63+0,5n	2H-126	63+0,9n	1,1H-70
8 7		1	1	_	62+	09-Н	62+2,3n	0,43H-27	-	_	_	1
9	60+1.5n	0,67H-40	60+3,8n	09-H	I	I	1	I	_	_	_	1
2	60+3 4n	0,3H-18	60+2,2n	0,45H-27	-	ı	1	1	1	-	-	I
4	Н	u	Н	u	Н	п	Η	п	Η	u	Η	п
3	ГПС-2000		CB∏(Э)-8		ППС-600		ГПС-600		009-ДЦ		009-DIJ	
5		"					1					

Окончание табл. 16.10.

5	ı	u			п	0
	8	65+0,16n	6H-410		65+0,61	1,7H-110
	7	65+16n	0,6H-41		_	T
	9	_	-		_	-
	2	-	I		_	I
	4	Н	u		Η	u
	3	ППС-2000			ГПС-2000	
	2			ב		
	-	10			11	

Примечания:

МЛ — магистральная линия;

Н — требуемый напор на насосе пожарного автомобиля, м; п — количество рукавов в магистральной линии, шт.

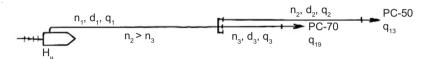
Норма ПБ www.normapb.ru

Таблица 16.11

Определение ∆Н

								γ	VΗ						
	Концентра-			Для	вставки	Для вставки d=10 мм					Для	Для вставки d=25 мм	д=25 м	M	
Схема подачи пенообразователя	ция ПО в				Тиг	Тип и количество стволов в насосно-рукавной системе	ество ст	в вопов	насосн	э-рукавн	ой систе	эме			
	воде, %	1	0	2	-	LUC-		_	TTC-600				LUC.	-IIC-2000	
		-	7	0	4	2000	4	9	8	12	16	1	2	3	4
	3	9,0	2,4	5,4	5,4 9,6	5,15	1,5	1,5 3,4 6,0 13,5	6,0	13,5	24	6,0	3,6	8,4	14,4
	9	2,4	9,6	22	38	22	6,0	17,6	24	54	96	3,6	14,4	32	58
	6	5,4	22	49	85	150 13,5	13,5	31	54	I	I	8,1	32	73	1
	12	9,6	39	98	I	188	24	96	96	I	I	14,4	58	I	I

$$Q = \mu \cdot S_{om} \cdot \sqrt{2g \cdot H_{A\Pi T}} ,$$


где Q — расход пенобразователя, который необходим для пенобразования, $\mathrm{m}^3/\mathrm{c}.$

Из формулы видно, если изменять площадь отверстия, через которое подается пенообразователь $S_{\rm or}$, то напор на насосе АПТ должен быть постоянным, если $S_{\rm or}$ = const, то подача регулируется напором $H_{\rm AПT}$.

m — коэффициент расхода зависит от вида отверстия (принимается 0,7 для круглых отверстий).

g — ускорение свободного падения, м²/с.

Особый интерес для практики пожаротушения представляет расчет неравномерно нагруженных схем, одна из которых приведена на рис. 16.11, в которой нужно определить требуемый напор на насосе пожарного автомобиля (H_H) и требуемую подачу насоса Q_{TD} .

PC-50, PC-70 — соответственно ствол PC-50 с диаметром насадка 13 мм, ствол PC-70 с диаметром насадка 19 мм;

 $n_{1}, n_{2}, n_{1}, d_{1}, n_{2}, n_{3}$ — соответственно комплекс рукавов, шт., диаметр рукавов, мм, расход воды, л/с в магистральной и рабочей рукавной линиях;

 ${\bf q}_{{\scriptscriptstyle 1}},\,{}_{{\scriptscriptstyle 3}},\,{\bf q}_{{\scriptscriptstyle 19}}$ — расход воды из ручных лафетных стволов с диаметром насадков 13 и 19 мм.

Для расчета насосно-рукавной системы составляем систему уравнений

$$H_{_{\rm H}}=n_1S_1q_1{}^2+n_2S_2q_2{}^2+S_{13}q_{13}{}^2$$
 т.к. $q_2=q_{13};\ q_3=q_{19},$ тогда: $H_{_{\rm H}}=n_1S_1q_1{}^2+n_3S_3q_3{}^2+S_{19}q_{19}{}^2$ $n_2S_2q_2{}^2+S_{13}q_{13}{}^2=n_3S_3q_3{}^2+S_{19}q_{19}{}^2.$

Задаемся расходом на одном из стволов (как правило, наиболее нагруженной линии \mathbf{q}_{13}), тогда уравнение для определения \mathbf{q}_{19} принимает вид:

$$q_{19} = q_{13} \cdot \sqrt{\frac{n_2 \cdot S_2 + S_{13}}{n_3 \cdot S_3 + S_{19}}} \ ,$$

таким образом q_{19} и q_{13} известны, то

$$H_{H} = n_{1}S_{1}q_{1}^{2} + n_{2}S_{2}q_{2}^{2} + S_{13}q_{13}^{2},$$

где
$$q_1 = q_{19} + q_{13}$$

$$Q = q_{13} + q_{19}$$

Аналогично можно рассчитать схему и для трех рабочих линий.

Неравномерно нагруженные схемы (рис. 16.12) при двух магистральных рукавных линиях.

Нужно определить требуемые напор на насосе пожарного автомобиля и его подачу.

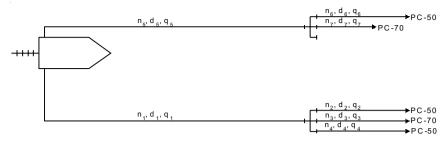


Рис. 16.12

Решение: Задаем расход одного из стволов наиболее нагруженной линии и по формуле определяем расходы из всех остальных стволов и определяем требуемый напор на насосе.

$$H_{H} = n_1 S_1 q_1^2 + n_2 S_2 q_2^2 + S_{13} q_{13}^2,$$

 $q_2 = q_{13}; q_1 = q_{13} + q_{19} + q_{13}.$

Для определения расходов из стволов для магистральной линии с параметрами (n_5 , d_5 , q_5) составим уравнение

$$H_{_{\rm H}}=n_5S_5q_5^2+n_6S_6q_6^2+S_{13}q_{13}^2.$$

 Т.к. $q_5=q_{13}+q_{19};\ q_6=q_{13},\ {
m тогдa}$
 $H_{_{\rm H}}=n_5S_5(q_{13}+q_{19})^2+n_6S_6q_{13}^2+S_{13}q_{13}^2.$

Подставим в полученное уравнение вместо q_{19} выражение

$$q_{13} \cdot \sqrt{\frac{n_6 \cdot S_6 + S_{13}}{n_7 \cdot S_7 + S_{19}}}$$

и получим уравнение с одним неизвестным

$$H_{\scriptscriptstyle H} = q_{13}^{\ 2} \left[1 + \left(\sqrt{\frac{n_6 S_6 + S_{13}}{n_7 S_7 + S_{19}}} \right)^2 + n_6 S_6 + S_{13} \right],$$

из которого найдем значение q13

$$q_{13} = \sqrt{\frac{H_{_H}}{n_5 S_5 \left(1 + \sqrt{\frac{n_6 S_6 + S_{13}}{n_7 S_7 + S_{19}}}\right)^2}}$$

Требуемая подача насоса пожарной машины будет равна $Q_{19} = \sum q_{19} \iota + \sum q_{13} \iota, \ \iota \subseteq (1, \ n)$

17. ОЦЕНКА ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ ПО РЕАЛИЗАЦИИ СВОИХ ТАКТИЧЕСКИХ ВОЗМОЖНОСТЕЙ ПРИ ПОДАЧЕ ОГНЕТУШАЩИХ СРЕДСТВ

Тактические возможности пожарных подразделений можно рассматривать без установки пожарных машин на водоисточники и с установкой на водоисточники. Без установки на водоисточники используются пожарные машины, которые вывозят на пожары запас воды, пенообразователя и других огнетушащих средств. К ним относятся пожарные автоцистерны, пожарные автомобили аэродромной службы, пожарные поезда и др.

Руководитель тушения пожара должен не только знать возможности подразделений, но и уметь определять основные тактические показатели:

- время работы стволов и пеногенераторов;
- возможную площадь тушения ВМП;
- возможный объем тушения пеной средней кратности при имеющемся на машине пенообразователе или растворе.

17.1. Определение тактических возможностей пожарных подразделений без установки автомобилей на водоисточник

Время работы водяных стволов от пожарных автомобилей без установки их на водоисточники определяют по формуле:

$$\tau = (0.9W_{II} - \sum N_{Di} W_{Di}) / \sum N_{CTI} Q_{CTI} 60,$$
 (17.1)

где т — время работы стволов, мин;

 $W_{_{II}}$ — объем воды в цистерне пожарной машины, л;

 $N_{pi}^{"}$ — число рукавов в магистральной и рабочих линиях, шт.;

 $\hat{W_{pi}}$ — объем воды в одном рукаве, л;

 $N_{\rm cri}^{\nu}$ — число водяных стволов, работающих от данной пожарной машины, шт.:

 Q_{cri} — расход воды из стволов, л/с.

Время работы пенных стволов и генераторов пены средней кратности определяют:

$$\tau = (W_{p-pa} - \sum N_{pi} W_{pi})/N_{cbn(rnc)} Q_{cbn(rnc)} 60,$$
 (17.2)

где W_{p-pa} — объем 4 или 6 %-ного раствора пенообразователя в воде, получаемый от заправочных емкостей пожарного автомобиля, л;

 $N_{\mbox{\tiny CB\Pi(Finc)}}$ — число воздушно-пенных стволов (СВП) или генераторов пены средней кратности (ГПС), шт.;

 $Q_{_{\text{свп(rnc)}}}$ — расход водного раствора пенообразователя из одного ствола (СВП) или генератора (ГПС), л/с.

Объем раствора зависит от количества пенообразователя и воды в заправочных емкостях пожарного автомобиля. Для получения 4%-ного раствора необходимы 4 л пенообразователя и 96 л воды (на 1 л пенообразователя 24 л воды), а для 6%-ного раствора 6 л пенообразователя и 94 л воды (на 1 л пенообразователя 15,7 л воды). Сопоставляя данные, можно сделать вывод, что в одних пожарных машинах без установки на водоисточники расходуется весь пенообразователь, а часть воды остается в емкости цистерны, в других вода полностью расходуется, а часть пенообразователя остается.

Чтобы определить объем водного раствора пенообразователя, надо знать, насколько будут израсходованы вода и пенообразователь. Для этой цели количество воды, приходящееся на 1 л пенообразователя в растворе, обозначим К... Тогда фактическое количество воды, приходящееся на 1л пенообразователя, определяют по формуле

$$\mathbf{K}_{\Phi} = \mathbf{W}_{\mu} / \mathbf{W}_{no}, \tag{17.3}$$

где $W_{_{\! I\! I}}$ – объем воды в цистерне пожарной машины, л;

W_{по} — объем пенообразователя в пожарной машине, л.

Фактическое количество воды $K_{_{th}}$ приходящееся на 1 л пенообразователя сравниваем с требуемым $K_{_{\rm B}}$. Если $K_{_{\rm B}} < K_{_{\rm d}}$, то пенообразователя, находящийся на одной машине, расходуется полностью, а часть воды остается. Если $K_{_{\rm B}} > K_{_{\rm th}}$, тогда вода в емкости машины расходуется полностью, а часть пенообразователя остается.

Количество водного раствора пенообразователя при полном расходе воды, находящейся на пожарной машине, определяют по формуле:

$$W_{p-pa} = W_{I\!I}/K_{_B} + W_{_{I\!I}},$$
 (17.4) где $W_{p-pa} -$ количество водного раствора пенообразователя, л.

При полном израсходовании пенообразователя данной пожарной машины количество раствора определяют по формуле

$$W_{p-pa} = W_{no} K_{B} + W_{no}, (17.5)$$

где W_{no} — количество пенообразователя на машине, л.

Возможную площадь тушения легковоспламеняющихся и горючих жидкостей раствором пенообразователя в воде определяют по формуле

$$S_{T} = W_{p-pa} / J_{s}^{T} \tau_{p},$$
 (17.6)

где S_{τ} — возможная площадь тушения, M^2 ;

 J_{s}^{T} — нормативная интенсивность подачи раствора пенообразователя в воде на тушение пожара, $\pi/(M^2c)$;

 $\tau_{\rm p}$ — расчетное время тушения, с.

Объем воздушно-механической пены низкой и средней кратности определяют по формуле:

$$W_{n} = W_{p-pa} \hat{K};$$
 $W_{n} = W_{no} K_{n}$ (17.7)

где W_{π} — объем пены, л;

K — кратность пены, M^3 ;

 W_{mo} — количество пенообразователя на машине или расходуемая часть его, л;

 K_n — количество пены, получаемой из 1 л пенообразователя (для 4%-ного раствора составляет 250 л, для 6%-го — 170 л при кратности 10 и соответственно 2500 и 1700 при кратности 100)

Объем тушения (локализация) воздушно-механической пены низкой и средней кратности определяют по формуле:

$$W_{T} = W_{T} / K_{3}, \tag{17.8}$$

где $W_{_{\rm T}}$ — объем тушения пожара, м³:

 W_n — объем пены, м³; K_3 — коэффициент запаса пены, учитывающий ее разрушение и потери. Он показывает, во сколько раз больше необходимо взять пены средней кратности по отношению к объему тушения; К = 2,5...3,5.

17.2 Определение тактических возможностей подразделений при установке автомобилей на водоисточники

Подразделения, вооруженные пожарными автоцистернами, осуществляют боевые действия на пожарах с установкой машин на водоисточники в случаях, когда водоисточник находится рядом с горящим объектом, а также когда запаса огнетушащих веществ, вывозимых на автомобиле, не достаточно для ликвидации пожара и сдерживания распространения огня на решающем направлении. Кроме того, с водоисточников работают подразделения на автоцистернах после израсходования запаса огнетушащих средств, а также по распоряжению руководителя тушения пожара, когда они прибывают на пожар по дополнительному вызову. Пожарные автонасосы, насосно-рукавные автомобили, пожарные насосные станции, мотопомпы и другие пожарные машины, которые не доставляют на пожар запас воды, устанавливаются на водоисточники во всех случаях.

При установке пожарных автомобилей на водоисточники тактические возможности подразделений значительно возрастают. Основными показателями тактических возможностей подразделений с установкой машин на водоисточники являются: предельное расстояние по подаче огнетушащих веществ, продолжительность работы пожарных стволов и генераторов на водоисточниках с ограниченным запасом воды, возможные площадь тушения горючих жидкостей и объем в здании (сооружении) при заполнении его воздушно-механической пеной средней кратности.

Предельным расстоянием по подаче огнетушащих средств на пожарах считают максимальную длину рукавных линий от пожарных машин установленных на водоисточники, до разветвлений, расположенных у места пожара или до позиций стволов (генераторов), подаваемых отделением на тушение пожаров. Зависит численности боевого расчета, а также от сложившейся на пожаре обстановки.

Для работы со стволами в различной обстановке требуется неодинаковое количество личного состава. Так, при подаче одного ствола РС-50 на уровне земли необходим один человек, а при подъеме его на высоту — не менее двух. При подаче одного ствола РС-70 на уровне земли нужно

два человека, а при подаче его на высоту или при работе со снятым насадком — не менее трех человек. Для подачи одного ствола PC-70 или PC-50 в помещения с задымленной или отравленной средой требуется звено газодымозащитников и пост безопасности, т.е. не менее четырех человек и т.д. Следовательно число приборов тушения, работу которых может обеспечить отделение, определяется конкретной обстановкой на пожаре.

Продолжительность работы приборов тушения от водоисточников с ограниченным запасом воды определяют по формуле

$$\tau = 0.9 \text{ W}_{\text{\tiny B}} / \Sigma \text{ N}_{\text{\tiny mpi}} \text{ Q}_{\text{\tiny mpi}}, \tag{17.9}$$

где W_{R} - запас воды в водоеме, л;

 $N_{\rm npi}$ — число приборов (стволов, генераторов), поданных от всех пожарных машин, установленных на данный водоисточник ;

 Q_{npi} — расход воды одним прибором, л/с.

Продолжительность работы пенных стволов и генераторов зависит не только от запаса воды в водоисточнике, но и от запаса пенообразователя в заправочных емкостях пожарных машин или доставленного на место пожара. Продолжительность работы пенных стволов и генераторов по запасу пенообразователя определяют по формуле:

$$\tau = W_{no} / N_{cbn(rnc)} Q_{cbn(rnc)}, \qquad (17.10)$$

где W_{no} — запас пенообразователя в заправочных емкостях пожарных машин, л; $N_{\text{свп(гпс)}}$ — число воздушнопенных стволов (СВП) или генераторов пены средней кратности (ГПС) от одного пожарного автомобиля, шт.;

 $Q_{\text{сви(гис)}}$ — расход пенообразователя из одного ствола, л/с.

Возможные площади тушения легковоспламеняющихся и горючих жидкостей при установке пожарных машин на водоисточники определяют по формуле (17.6.). Вместе с тем надо помнить, что объем раствора, определяют с учетом израсходования всего пенообразователя из пенобака пожарной машины по формуле (17.5.) или

$$W_{p-pa} = W_{no} K_{p-pa}$$
, (17.11)

где K_{p-pa} — количество раствора, получаемого из 1 л пенообразователя (K_{p-pa} = K_{p} + 1 при 4%-ном растворе K_{p-pa} = 25 л, при 6%-ном K_{p-pa} = 16.7 л).

Возможный объем тушения пожара (локализации) определяют по формуле (17.8). При этом количество раствора находят по формулам (17.5) или (17.11), а объем пены — по (17.7).

Для ускоренного вычисления объема воздушно-механической пены низкой и средней кратности, получаемой от пожарных машин с установкой их на водоисточник при расходе всего запаса пенообразователя, используют следующие формулы.

При тушении пожара ВМП низкой кратности (K=10), 4- и 6%-ном водном растворе пенообразователя

$$W_{n} = W_{no} / 4 \text{ M } W_{n} = W_{no} / 6, \tag{17.12}$$

где W_{Π} — объем пены, M^3 ;

 $W_{\text{по}}$ — запас пенообразовавтеля в заправочных емкостях пожарных автомобилей, л;

4 и 6 — количество пенообразователя (в литрах), расходуемого для получения 1 м 3 пены соответственно при 4- и 6%-ном растворе.

При тушении пожара ВМП средней кратности (K=100), 4- и 6%-ном водном растворе пенообразователя

$$W_{n} = (W_{no} / 4)10 \text{ M } W_{n} = (W_{no} / 6)10.$$
 (17.13)

Продолжительность работы приборов тушения зависит от запаса воды в водоисточнике и пенообразователя в заправочной емкости пожарной машины. Водоисточники, которые используют для тушения пожаров, условно подразделяются на две группы: водоисточники с неограниченным запасом воды (реки, крупные водохранилища озера, водопроводные сети) и водоисточники с ограниченным запасом воды (пожарные водоемы, брызгательные бассейны, градирни, водонапорные башни и др.).

17.3 Примеры определения тактических возможностей при полдаче огнетушащих веществ

Обосновать тактические возможности отделения на АЦ-40 (131)137 без установки ее на водоисточник.

1. Определяем время работы двух водяных стволов с диаметром насадка 13 мм при напоре на нем 40 м, если до разветвления проложен один рукав диаметром 77мм, а рабочие линии состоят из двух рукавов диаметром 51 мм к каждому стволу:

$$\tau = (0.9 \mathrm{W}_{_{\mathrm{II}}} - \mathrm{N}_{_{\mathrm{P}}} \, \mathrm{W}_{_{\mathrm{P}}}) / \mathrm{N}_{_{\mathrm{CT}}} \, \mathrm{Q}_{_{\mathrm{CT}}} \, 60 = 2400 - 0.9 \cdot (1.90 + 4.40) / (2.3,7.60) = 4,3$$
 мин.

2. Определяем время работы пенных стволов и генераторов. Для этой цели необходимо найти объем водного раствора пенообразователя, который можно получить от АЦ-40(131)137:

$$K_{\Phi} = W_{_{II}} / W_{_{IIO}} = 2400/150 = 16.$$

Следовательно $K_{_{\rm B}} = 15.7 < K_{_{\rm \Phi}} = 16$ при 6%-ном растворе. По этому объем раствора определим по формуле:

$$W_{p-pa} = W_{no} K_{B} + W_{no} = 150.15,7 + 150 = 2500 л.$$

Определяем время работы одного пенного ствола СВП-4, если напор у ствола 40м, а рабочая линия состоит из двух рукавов диаметром 77 мм:

$$\tau = (W_{p-pa} - N_p W_p)/N_{cBH(rnc)} Q_{cBH(rnc)} 60 = (2500 - 2\cdot70)/1\cdot6\cdot60 = 6.5$$
 мин.

3. Определяем возможную площадь тушения ЛВЖ и ГЖ ВМП средней кратности:

$$S_{_{\mathrm{T}}} = W_{_{\mathrm{p-pa}}} / J_{_{\mathrm{S}}}^{_{\mathrm{T}}} \tau_{_{\mathrm{p}}} 60 = 2500/0,08\cdot10\cdot60 = 52 \text{ м}^2,$$
 где $S_{_{\mathrm{T}}}$ — возможная площадь тушения, м 2 .

4. Определяем возможный объем тушения (локализации) пожара пеной средней кратности (K=100). Для этой цели по формуле определим объем пены:

$$W_{\pi} = W_{\text{n-na}} K = 2500 \cdot 100 = 250000 \text{ л или } 250 \text{ м}^3.$$

Из условий тушения (планировки помещения, подачи пены, нормативного времени тушения, плотности горючей нагрузки, возможности

обрушения и т.д.) принимаем значение ${\rm K_{_3}}=3.$ Тогда объем тушения (локализации) будет равен

$$V_{T} = V_{T} / K_{2} = 250/3 = 83 \text{ m}^{2}$$
.

Из приведенного примера следует, что отделение, вооруженное АЦ-40(131)137 без установки автомобиля на водоисточник, может обеспечивать работу одного ствола PC-50 в течение 10 минут, двух стволов PC-50 или одного ствола PC-70 в течение 5 минут, одного пенного ствола СПВ-4 в течение 4-5 минут, одного генератора ГПС-600 в течение 67 минут, ликвидировать горение бензина пеной средней кратности на площади до 50 м², керосина — до 80 м² и масла пеной низкой кратности — до 40 м², потушить (локализовать) пожар пеной средней кратности в объеме 80-100 м³.

Кроме указанных работ по тушению пожара, не задействованная часть личного состава отделения может выполнить отдельные работы по спасанию людей, вскрытию конструкций, эвакуации материальных ценностей, установке лестниц и др.

Дано: Пожар произошел в подвале жилого дома. Размеры подвала 44x12x12 м. Тушение производилось пеной средней кратности.

Необходимо определить требуемое количество пенных пожарных стволов ГПС-600, пенообразователя и пожарных автомобилей для его доставки.

Решение:

1. Определяем требуемое количество пожарных стволов ГПС-600 на тушение:

$$N = (W_n \cdot K_p)/(K_n \cdot q_{nnc} \cdot \tau \cdot 60) = (44 \cdot 12 \cdot 2 \cdot 3)/(100 \cdot 0,006 \cdot 10 \cdot 60) = 8.8.$$

Принимаем девять стволов ГПС-600), где:

 W_{π} — объем подвала, заполняемого пеной, м3;

 ${\rm K_p}$ — коэффициент разрушения пены;

 K_{π}^{r} — кратность пены (принимаем равной 100);

 ${
m q}_{
m rnc}$ — расход 6%-ного раствора пенообразователя в воде из ствола ГПС-600, м3/c;

 τ — время тушения, мин.

2. Определяем требуемое количество пенообразователя для тушения: $W_{no} = q_{no} \cdot N \cdot \tau \cdot 60 = 0.36 \cdot 9 \cdot 10 \cdot 60 = 1950 \text{ л},$

где \mathbf{q}_{no} — расход пенообразователя из пожарного ствола ГПС-600 при 6%-ной его концентрации в растворе, л/с.

- 3. Определяем количество пожарных автомобилей для доставки пенообразователя к месту пожара:
 - пожарных автомобилей пенного тушения АВ-40(375)Ц50:

$$N_{A\Pi T} = W_{no}/W_{A\Pi T} = 1950/4000 = 1 A\Pi T,$$

где $W_{\text{A\PiT}}$ — емкость цистерны для пенообразователя, л;

- пожарных автонасосов:

$$N_{AH} = W_{\Pi O}/W_{6.\pi} = 1950/350 = 6 \text{ AH},$$

где $W_{6.n.}$ — емкость бака для пенообразователя на пожарном автонасосе, л;

- пожарных автоцистерн на шасси ЗИЛ-130:

$$N_{\text{AII}} = W_{\text{ПО}}/W_{\text{6.п.}} = 1950/150 = 13$$
 шт. - пожарных автоцистерн на шасси УРАЛ-375: $N_{\text{AII}} = W_{\text{ПО}}/W_{\text{6.п.}} = 1950/180 = 11$ шт.

Дано: Обосновать основные тактические возможности отделения, вооруженного насосно-рукавным автомобилем АНР-40 (130)127A.

1. Определить предельное расстояние по подаче одного ствола РС-70 с диаметром насадка 19 мм и двух стволов РС-50 с диаметром насадка 13 мм, если напор у ствола 40 м, а максимальный подъем их 12 м, высота подъема местности составляет 8 м, рукава прорезиненные диаметром 77 мм:

MM:
$$l_{np} = (H_H - (H_{np} \pm Z_M \pm Z_{np})/SQ^2)20 = (100 - (50 + 8 + 12)/0,015 \cdot (14,8)2) \cdot 20 = 180 \text{ M}.$$

Полученное предельное расстояние сравним с числом рукавов на АНР-40(130)127A (20 рук. x 20 м=400 м) (без учета резерва)

Следовательно, отделение, вооруженное автонасосом обеспечивает работу стволов по указанной схеме, так что число рукавов, имеющихся на автомобиле, превышает предельное расстояние по расчету.

2. Определить продолжительность работы двух стволов PC-70 с диаметром насадка 19 мм и четырех стволов PC-50 с диаметром насадка 13 мм, если напор у стволов 40 м и автомобиль установлен на водоем с запасом воды 50 м^3 :

$$\tau = 0.9 \cdot V_{\text{\tiny R}} / N_{\text{\tiny IID}} Q_{\text{\tiny IID}} 60 = 0.9 \cdot 50 \cdot 1000 / (2 \cdot 7.4 + 4 \cdot 3.7) \cdot 60 = 25 \text{ Muh.}$$

3. Определить продолжительность работы двух ГПС-600 от автонасоса, установленного на реку, если напор у генераторов 60 м.

Учитывая, что один ГПС-600 при напоре 60 м расходует пенообразователя 0.36 n/c:

$$\tau = W_{\text{no}}/N_{\text{ruc}} Q_{\text{ruc}} 60 = 350/2.0, 36.60 = 8,1 \text{ мин.}$$

4. Определить возможную площадь тушения горючих жидкостей ВМП низкой кратности. Для этого необходимо найти 6%-ный объем раствора по формуле:

$$\mathbf{W}_{\text{p-pa}} = \mathbf{W}_{\text{no}} \ \mathbf{K}_{\text{B}} + \mathbf{W}_{\text{no}} = 350 \cdot 15,7 + 350 = 6845 \ \pi, \\ \mathbf{S}_{\text{T}} = \mathbf{W}_{\text{p-pa}} / \mathbf{J}_{\text{S}}^{\text{T}} \ \tau_{\text{p}} \ 60 = 5845/0,05 \cdot 10 \cdot 60 = 65 \ \text{M}^2.$$

5. Определить возможную площадь тушения ЛВЖ пеной средней кратности при $J_3=0.05\ \text{п/c}\ \text{м}^2$:

$$S_{T} = W_{p-pa} / J_{s}^{T} \tau_{p} 60 = 5845/0,05 \cdot 10 \cdot 60 = 195 \text{ M}^{2}.$$

6. Определить возможный объем тушения (локализации) ВМП средней кратности, если использовался 4%-ный раствор пенообразователя при коэффициенте заполнения Кв=3,5

Определяем объем пены и объем раствора:

$$egin{aligned} W_{_{p ext{-}pa}} &= W_{_{\text{по}}} \; K_{_{\text{B}}} + W_{_{\text{по}}} = 350 \cdot 24 + 350 = 8750 \; \pi, \ W_{_{\text{T}}} &= W_{_{p ext{-}pa}} \; K = 8750 \cdot 100 = 875000 \; \pi \; \text{или} \; 875 \; \text{м}^3, \ W_{_{\text{T}}} &= W_{_{\text{T}}} \; / \; K_{_{p}} = 875/3, 5 = 250 \; \text{м}^3. \end{aligned}$$

Следовательно, отделение на насосе при установке машины на водоисточник может обеспечить работу ручных и лафетного стволов, одного-

двух ГПС-600 или СВП-4 в течение 16-8 мин., потушить горючую жидкость ВМП низкой кратности на площади до 65 м 2 , а пеной средней кратности на площади до 200 м 2 , и ликвидировать (локализовать) пожар пеной средней кратности при 4%-ном растворе пенообразователя в объеме до 250 м 3 .

Таким образом, зная методику обоснования тактических возможностей пожарных подразделений, можно заблаговременно определить возможный объем боевых действий на пожаре и организовать их успешное осуществление.

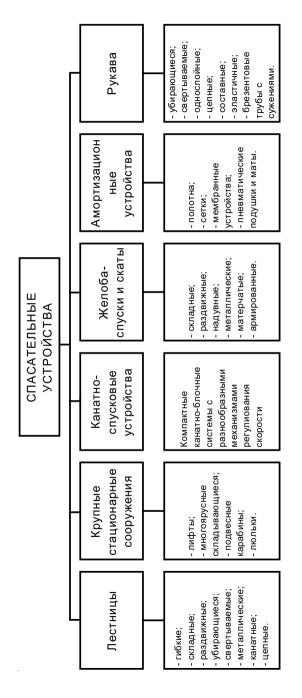
18. ОЦЕНКА ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ ПО РЕАЛИЗАЦИИ ТАКТИЧЕСКИХ ВОЗМОЖНОСТЕЙ ПО СПАСАНИЮ ЛЮДЕЙ

18.1 Результаты экспериментов по спасанию людей из зданий

Основной боевой задачей на пожаре является обеспечение безопасности людей. Одним из способов, обеспечивающих их безопасность, является их спасание.

Спасание людей — действия по эвакуации людей, которые не могут самостоятельно покинуть зону, где имеется вероятность воздействия на них опасных факторов пожара.

Время, отпущенное на проведение спасательных работ tсп, как правило, ограничено. И оно должно быть использовано до наступления опасных факторов пожара ($\tau_{\rm opn}$): $\tau_{\rm cn} \leq \tau_{\rm opn}$.



Кроме общих факторов, существенное влияние на длительность спасания оказывают: приемы и способы спасания, наличие технических и иных средств спасания, конструктивно-планировочное решение здания или сооружения, подготовка личного состава пожарных подразделений, состояние спасаемых, время суток и др.

Пожары, происшедшие в зданиях повышенной этажности (ЗПЭ), показывают, что осуществить эвакуацию всех людей до наступления в здании предельно допустимых опасных факторов пожара в большинстве случаев невозможно. Скорость распространения дыма и тепловых потоков настолько велика, что даже при работающей системе противопожарной защиты могут быть блокированы люди в помещениях не только на этаже, где произошел пожар, но и на других этажах. Поэтому пожарные подразделения по прибытию к месту пожара немедленно приступают к оказанию помощи людям.

Спасательные работы организуются и проводятся выводом, выносом и спуском (рис. 18.1, 18.2). При этом используются различные спасательные устройства: лестницы, крупные стационарные сооружения, канатно-спус-

Норма ПБ www.normapb.ru

Рис. 18.3

ковые устройства, желоба-спуски, амортизационные устройства, спасательные рукава, надувные прыжковые матрацы (подушки) (рис. 18.3).

Временные параметры спуска людей с этажей здания, нуждающихся в помощи приведены в табл. 18.1

Спасательные работы можно проводить путем вывода людей к оконным проемам с дальнейшим их спуском по автолестницам.

Таблица 18.1 Результаты экспериментов по проведению спасательных работ по лестничным маршам (высота этажа 3 м)

Действия	Этаж	Время, с
	28	504
Спуск на первый этаж здания группы спасаемых	20	360
из 8 человек в сопровождении 3-х пожарных по	16	286
незадымленной лестничной клетке	14	252
	10	180

Однако, обеспечить по автолестницам массовую эвакуацию из ЗПЭ невозможно, т.к. высота автолестниц ограничена и перестановка их в условиях пожара занимает много времени, а порой это сделать и невозможно.

Результаты экспериментов по подъему и спуску пожарных по автолестницам приведены в табл. 18.2.

Таблица 18.2

Действия	Этаж	Время, с
	9	68
Подъем 1 человека	12	91
	14	119
	9	80
Спуск 1 человека	12	120
	14	210
	9	292
Спуск 10 человек	12	350
	14	536

Пожарные автомобильные лестницы и коленчатые подъемники можно классифицировать по многим параметрам, однако, наиболее характерны для пожарной тактики их максимальная длина выдвигания, подъема и они разделяются: малой длины — до 20 м, средней — до 30 м, большой ллины более 30 м.

В настоящее время подразделения гарнизонов оснащены автолестницами с высотой выдвигания 17 и 30 м, при полном выдвигании колен которых можно достигнуть соответственно 65 и 8 этажей зданий.

В крупных городах имеются автолестницы с высотой выдвижения 45, 52 и 62 м. Эти автолестницы оборудованы лифтами грузоподъемностью до $200~{\rm kr}$.

Коленчатые подъемники также оборудуются люлькой с грузоподъемностью до 400 кг. Коленчатые подъемники по сравнению с автолестницами позволяют более оперативно выполнять работы на высотах, так как обладают большой маневренностью. Из люльки без особого риска можно выполнять работы на пожаре в таких местах, которые невозможно достичь

на автолестницах.

На многих пожарах для эвакуации людей из ЗПЭ успешно использовался комбинированный способ применения автомобильных и ручных лестниц. Автомобильная лестница устанавливается к горящему зданию и выдвигается на максимальную высоту, затем пожарные поднимаются по ней со штурмовой лестницей и с ее помощью проникают в вышележащие этажи. При этом необходимо обеспечить надежную страховку спасаемых, для чего используются спасательные веревки и выставляют на каждом этаже, балконе пожарных.

В табл. 18.3 приведены результаты экспериментальных данных по спасанию людей с помощью спасательной веревки со 2, 3, 4 этажей здания высотой этажа 2,7 м. В процессе эксперимента варьировали вес спасаемых и этаж спасания.

Таблица 18.3 Обобщенные данные по спасанию людей из здания с помощью спасательной веревки

	Этаж	Вес спасаемого, кг / время спасания, с									
Этаж	60	65	70	75	80	85	90				
	2	31,3	33	35	39	40	41	44			
	3	31,8	34,4	38	41	42	44	46			
	4	38	39	42	44	44	49	48			

Полный цикл спасания одного человека тремя пожарными с этажа здания с помощью спасательной веревки состоит из следующих последовательных элементов данной операции:

- движение пожарных для отыскания спасаемого;
- движение пожарных со спасаемым к проему;
- вязка спасательного кресла;
- надевание спасательного кресла на спасаемого;
- спуск спасаемого до безопасной зоны;
- снятие веревки со спасаемого и подъем ее на этаж спасания.

Время затрачиваемое: для снятия спасательной веревки около 8 сек, вязка спасательного кресла около 21 сек, на подъем спасательной веревки 17 сек.

Время спасания с помощью спасательной веревки зависит от этажа спасания, чем выше этаж, тем время спасания будет больше.

В таблицах 18.4, 18.5 приведены результаты по спасанию людей (выносом) по лестничным маршам. Время спасания существенно зависит от веса спасаемого, этажа спасания.

Полный цикл спасания одного человека двумя пожарными способом "вынос" состоит:

- движение пожарных по лестничной клетке и горизонтальному участку к месту спасания без спасаемого;
 - отыскание спасаемого;
 - движение пожарных со спасаемым в безопасную зону.

Как известно, в нормальных условиях эвакуация людей из многоэтажного здания осуществляется с помощью лифтов, при аварийных

Таблица 18.4 Зависимость времени спасания по лестничному маршу от веса спасаемого

Jabric	Зависимоств времени спасания по лестничному маршу от веса спасаемого									
Этаж	Вес, кг									
Этаж	60	65	70	75	80	90				
2	36	37	39	40	45	47				
4	74	76	83	86	88	97				
6	105	107	110	119	122	129				
8	161	164	170	175	181	192				
10	183	192	200	216	228	242				
12	243	250	261	270	276	288				
14	295	301	310	320	330	346				

Таблица 18.5 Обобщенные данные по спасанию людей (выносом) по маршу лестничной клетки

	Средняя скорость движения пожарных, м/мин					
Способ переноски	без спас	аемого	со спасаемым			
спасаемого	вверх по	по горизонталь-	по горизонталь-	вниз по лестничной		
	лестничной клетке	ному участку	ному участку	клетке		
Переноска на руках	28	41	38	21		
Переноска на носилках	30	43	42	21		

же ситуациях, согласно нормам пожарной безопасности, лифты и др. механические средства транспортирования людей при определении расчетного времени эвакуации не учитываются.

В то же время, как показали уроки пожаров, а так же расчеты и пожарно-тактические учения, эвакуацию людей по лестницам можно считать безопасной только для зданий, не превышающих 10-12 этажей. При эвакуации из боле высоких зданий на лестницах образуются людские потоки высокой плотности, что увеличивает время пребывания людей в горящем здании и делает эвакуацию не безопасной. Поэтому в аварийных условиях лестницы многоэтажных общественных зданий могут быть использованы только для частичной эвакуации. Так, в зданиях высотой 20 этажей время движения при вынужденной эвакуации по лестнице составляет 15-18 мин., в 30-ти этажных — 25-30 мин. Задержка эвакуации на 2 мин приводит к тому, что успешно могут покинуть здание только 13% людей. Низкая надежность систем противодымной защиты может сделать пешеходную эвакуацию из высотных зданий вообще невозможной из-за воздействия опасных факторов пожара на пути эвакуации.

Таким образом, можно сделать вывод: особенно здания повышенной этажности с массовым пребыванием людей должны иметь в качестве дополнительных средств эвакуации специальные средства спасения, характеризующиеся высокой пропускной способностью, безопасностью, малым временем эвакуации и не требующие от людей специальных знаний и навыков для их использования.

Анализ зарубежной информации, а так же результаты исследований, проведенных во ВНИИПО МЧС России, позволяют сделать вывод о том, что в наибольшей мере указанным требованиям соответствуют рукавные спасательные устройства. Основным элементом, обеспечивающим безопасный спуск людей с высоты в спасательных устройствах, является эластич-

ный рукав, принцип действия которого основан на создании достаточной силы трения между стенками рукава и одеждой спускающегося внутри него человека. Скорость спуска в рукаве может регулироваться непосредственно спасаемым за счет изменения положения частей тела или спасателями, находящимися на земле (рукав можно отклонить от вертикали, закрутить или пережать руками). Спасательный рукав пригоден для спуска людей любого возраста, комплекции, физического и психического состояния. Важно отметить, что при пользовании спасательным рукавом люди не испытывают страха высоты.

В настоящее время серийно выпускается двухслойный спасательный рукав. Разрывная прочность рукава составляет 31.8 кH; установленный ресурс — не менее 500 циклов; температурный интервал применения — от минус 40 до плюс 80° C.

Наиболее быстро и эффективно спасательный рукав может быть использован при его стационарном размещении в здании в зоне возможного потока или скопления люлей.

Использование спасательного рукава на коленчатом подъемнике позволяет существенно увеличить производительность спасательных операций.

Неоспоримым преимуществом эластичного спасательного рукава перед другими видами спасательных устройств является высокая пропускная способность — 15-36 чел/мин. Причем скорость постоянна, а спуск происходит под действием своего веса. Спуски испытателей различного веса и телосложения показали скорость 1-3 м/с с высоты 22 м. В процессе спуска возможна остановка спускающегося в рукаве путем пережатия рукава руками, а так же регулирование скорости спуска путем закручивания. Основные результаты использования спасательных рукавов представлены в табл. 18.6

Таблица 18.6

Этажность	Длина СР, м	Время готов-	Время с	пуска, с	Средняя скорость,
- Отажность	длина СЕ, М	ности, с	1 чел	3-4 чел	м/с
13	40	22	30	39	1,3-1,0
17	52	22	37	47	1,4-1,1
21	53	22	40	50	1,32-1,06
25	66	22	46	55	1,43-1,2

В различных гарнизонах пожарной охраны накоплен свой опыт использования, как штатного ПТВ, так и переделанного для спасательных работ. Так в отдельных гарнизонах с помощью штурмовок, закрепленных за ограждение балконов, подоконников и других конструкций зданий составляют "непрерывную" лестницу, по которой при страховке пожарными осуществляется спуск людей в безопасное место. Для этой цели в обязательном порядке на рукавном автомобиле размещено по 10 лестниц-штурмовок, на автомобиле ГДЗС 4 лестницы. При этом штурмовки имеют по 2 крюка. Эти автомобили в обязательном порядке высылаются на пожары в здания повышенной этажности.

Кроме этого применяют спасательные пояса с подвесными парашютными системами.

В спасательных работах активно используют звенья ГДЗС, тактические возможности которых будут рассмотрены в 20 разделе.

18.2 Методика расчета сил и средств для спасания людей при пожарах в многоэтажных зданиях и сооружениях*

18.2.1. Спасание людей при помощи эластичного рукава, коленчатого подъемника, автолестницы

Суммарное время Тс спасательной операции по спасанию всех людей из всех мест сосредоточения при помощи одного средства спасания:

$$T_{c} = St_{1} + St_{2} + ST_{\phi} + St_{4} + St_{5} + St_{6}, \qquad (18.1)$$

где t_1 — время приведения средства спасания в рабочее состояния на требуемой позиции (в среднем 120 секунд);

 t_2 — время подъема, поворота и выдвигания средства спасания к месту сосредоточения спасаемых людей: t_2 = h/V_B ;

h — высота выдвигания, м;

 $V_{\scriptscriptstyle R}$ — скорость выдвигания (в среднем 0,3 м/с);

 T_{ϕ} — фактическое время спуска на землю всех спасаемых людей из одного места сосредоточения при спасании с помощью эластичного рукава или коленчатого полъемника:

$$T_{\Phi} = \Pi \cdot n \cdot h \cdot k, \tag{18.2}$$

где Π — пропускная способность средства спасания (табл. 18.7);

n — число людей, терпящих бедствие при пожаре в одном месте сосредоточения на высоте h метров;

k — коэффициент задержки, учитывающий увеличение времени спуска на землю за счет потерь времени при входе спасаемых людей в средство спасания (табл. 18.7).

Таблица 18.7

Пропускная способность средств спасания Пропускная Коэффициент Средство спасания Условие использования способность задержки к П (с/чел. м) Установлен для Эластичный рукав 0.2 6 использования из окна Установлен в люльке Эластичный рукав 0.2 6 коленчатого подъемника Коленчатый подъемник Спасание людей из окна 0.4 Автолестница Спасание людей с балкона 1.4

Фактическое время $T_{\phi 1}$ спуска на землю первого человека, спасаемого при помощи автолестницы:

$$T_{\phi} = 6 \cdot \Pi \cdot h \cdot 1 \cdot k. \tag{18.3}$$

Фактическое время $T_{\phi n}$ спуска на землю n-го человека, спасаемого при помощи автолестницы:

$$T_{\phi n} = T_{\phi 1} 6 \cdot \Pi \cdot h_1 \cdot (n-1) \cdot k, \tag{18.4}$$

 $T_{\phi n} = T_{\phi 1} \ 6 \cdot \Pi \cdot h_1 \cdot (n$ -1)·k, где $h_1 = 3$ м — расстояние по вертикали между людьми, спускающимися по

 t_4 — время сдвигания, поворота и опускания средства спасания ($t_4 = t_2$);

t₅ — время приведения средства спасания в транспортабельное состояние

 t_6 — время передислокации средства спасания с одной позиции на другую;

$$t_6 = S/V, \tag{18.5}$$

S - расстояние передислокации, м;

V — скорость передислокации (0,5 м/с);

К₁ — число мест сосредоточения спасаемых людей;

 К₂ — число передислокаций средства спасания с одной позиции на другую $(K_2 = K_1 - 1).$

Количество N_{cn} средств спасания при требуемом времени T_{ro} проведения спасательной операции по спасанию людей из всех мест сосредоточения:

$$N_{crr} = T_c/T_{rrr}, \tag{18.6}$$

 $N_{\rm cn} = T_{\rm c}/T_{\rm tp},$ (18.6) где $T_{\rm tp}$ — время, по истечении которого хотя бы один опасный фактор опасный фактор пожара в месте сосредоточения спасаемых людей принимает опасное для жизни человека значение. Рассчитывается для конкретных условий или подбирается исходя из опыта спасания людей в аналогичных случаях.

18.2.2. Спасание людей выносом на руках

Число N_n пожарных, требуемых для проведения спасательной опера-ЦИИ

$$N_n = (A_1 \cdot h \cdot N_c \cdot K_1)/(T_{rp} - N_c \cdot f),$$
 (18.7) где $A_1 = 1,2$ (человек·минута)/(человек·метр).

Физический смысл числа А, выражает среднюю производительность одного пожарного (в числителе "человек"), который в течение 1,2 минуты спускает одного спасаемого человека (в знаменателе "человек") на один метр по вертикали.

h — высота (м) от уровня земли, на которой находятся люди, терпящие бедствие при пожаре;

 N_c — число людей, нуждающихся в спасании способом выноса на руках;

 T_{rp} — требуемое время проведения спасательной операции (время выноса всех спасаемых людей наружу здания или сооружения);

f = 1 мин/чел. — коэффициент, учитывающий потери времени за счет образования очереди спасателей при их движении к месту и от места скопления спасаемых людей, а также при их снабжении СИЗОД;

 $K_1 = 1$ — при работе пожарных без СИЗОД;

 $K_1 = 1,5$ — при работе пожарных в СИЗОД.

Суммарное время Т_с проведения спасательной операции (время выноса всех спасаемых людей наружу здания или сооружения) при вовлечении в нее имеющихся в наличии $N_{\rm nh}$ пожарных.

$$T_{c} = A_{1} \cdot h \cdot N_{c} \cdot K_{1} / N_{mH} + N_{c} \cdot f.$$
 (18.8)

18.2.3. Спасание людей при помощи спасательной веревки

Число $N_{_{\rm II}}$ пожарных, требуемых для проведения спасательной операпии:

$$N_{n} = (A_{2} \cdot h \cdot N_{c} \cdot K_{1} \cdot K_{2}) / (T_{nn} - 0.15 h \cdot K_{1}), \tag{18.9}$$

где $A_2 = 0.1$ (человек·минута/человек·метр).

Физический смысл числа A_2 выражает среднюю производительность одного пожарного (в числителе "человек"), который в течение 0,1 минуты спускает одного спасаемого человека (в знаменателе "человек") на один метр по вертикали.

h — высота (м) от уровня земли, на которой находятся люди, терпящие бедствие при пожаре;

 ${
m N_c}$ — число людей, нуждающихся в спасании при помощи спасательной веревки;

 $T_{\tau p}$ — требуемое время проведения спасательной операции (время спуска всех спасаемых людей на землю);

0,15 мин/метр — время подъема пожарных без СИЗОД на 1 м по вертикали;

 $K_2 = 2$ — учет времени освобождения спасаемого человека от спасательной веревки, времени подъема освободившейся веревки для повторного использования, времени на непредвиденные обстоятельства.

Суммарное время T_c проведения спасательной операции при вовлечении в нее имеющихся в наличии $N_{\text{пн}}$ пожарных:

$$T_{c} = A_{2} \cdot h \cdot N_{c} \cdot K_{2} \cdot K_{1} / N_{mH} + 0.15 \cdot h \cdot K_{1}).$$
(18.10)

Сам процесс спасания при пожарах в некоторых случаях необходимо принимать меры, обеспечивающие безопасность спасаемого человека, в противном случае спасательная операция теряет свой смысл.

Максимальное требуемое усилие $P(\kappa r)$, с которым пожарный должен натянуть спасательную веревку для безопасного спуска спасаемого человека

$$P = P_0 \cdot e^{-cf} \,, \tag{18.11}$$

где P_0 — масса спасаемого человека, кг;

α — угол (в радианах) охвата спасательной веревки вокруг карабина;

f — коэффициент трения спасательной веревки по карабину (табл. 18.8);

е — основание натурального логарифма.

Таблица 18.8

Коэффициенты трения спасательной веревки по стальному карабину

Вид веревки	Коэффициент трения f
синтетическая сухая	0,08
пеньковая сухая	0,12

Необходимый угол α для безопасного спуска спасаемого человека: $\alpha = 1/f \cdot \ln(P_0/P)$. (18.12)

Необходимое число n оборотов спасательной веревки вокруг карабина:

$$n = a/2\pi. \tag{18.13}$$

Вероятность $P_{\rm nr}$ гибели спасаемого человека в результате вдыхания дыма или токсичных продуктов горения в процессе его спуска с высоты

(здание окутано дымом и продуктами горения):

$$P_{\rm nr} = H/(240 \cdot V),$$
 (18.14)

где H — высота от земли (м), на которой находится спасаемый человек (3 \leq H \leq 240);

V — скорость спуска спасаемого человека в дыму, по истечение которого он погибает с вероятностью 1.

Вероятность P_{ry} гибели спасаемого человека, спускающегося со скоростью $V \ge 3$ м/с при ударе о твердую поверхность балкона, подоконника или при приземлении:

$$P_{rv} = 57,2 \cdot 10^{-6} \cdot V^2 + 0,9 \cdot 10^{-6} \cdot e^V - 448 \cdot 10^{-6}.$$
 (18.15)

Вероятность P_{ry} реализации хотя бы одного из событий, выражаемых формулами 18.14, 18.15.

$$P_{nry} = P_{nr} + P_{ry} - P_{nr} \cdot P_{ry}. {18.16}$$

Оптимальная скорость $V_{\text{он}}$ спуска спасаемого человека с высоты H, при которой риск его гибели минимизируется:

$$V_{\text{oH}} = 4,0748 + 1,7913 \cdot \text{H}^{0.2}(1 - e^{-0.1 \cdot \text{H}}).$$
 (18.17)

Оптимальная скорость спуска, определяемая по формуле (18.17), является таковой при сплошном задымлении фасада горящего здания. Скорость $V_{\text{он}}$ в этом случае является верхним пределом скорости, с которой необходимо спускать на землю спасаемого человека. Если концентрация С дыма на фасаде здания отличается от концентрации, наблюдаемой в горящем помещении, оптимальная скорость спуска определяется по формуле:

$$V_{\text{ohc}} = C(V_{\text{oh}} - 3) + 3,$$
 (18.18)

где $V_{\text{онс}}$ — оптимальная скорость спуска спасаемого человека с высоты H при концентрация C дыма на фасаде здания, выраженной в долях от концентрации, наблюдаемой в горящем помещении и принятой за 1.

18.3 Примеры расчета сил и средств для спасания людей при пожарах в многоэтажных зданиях и сооружениях

18.3.1. Спасание людей при помощи эластичного рукава, коленчатого подъемника, автолестницы.

Задача 18.1. В результате пожара в 16-этажном жилом доме на 10-ом этаже оказались блокированными огнем и дымом 50 чел. Люди сосредоточились на балконе и в квартире. Вычислить время спасания всех людей при помощи выдвижной автолестницы при условии, что пожарные подразделения имеют в своем распоряжении достаточное количество личного состава для ее обслуживания и проведения спасательной операции.

<u>Решение:</u> Время приведения выдвижной автолестницы в рабочее состояние на требуемой позиции принимаем равным $t_1 = 120$ с.

Время подъема, поворота и выдвигания автолестницы к месту скопления людей на балконе 10-го этажа (высота этажа 3 м):

$$t_2 = 3.10/0.3 = 100 \text{ c}.$$

Фактическое время спуска на землю первого спасаемого человека (формула 18.3):

$$T_{du} = 6.1, 4.30.1.3 = 756 \text{ c.}$$

Фактическое время спуска на землю последнего спасаемого человека (формула 18.4):

$$T_{do50} = 756 \text{ c} + 6.1, 4.3.49.3 = 4460 \text{ c}.$$

Время, по истечении которого будет спасен первый человек (формула 18.1):

$$T_{c1} = 120 c + 100 c + 756 c = 976 c = 16 \text{ MUH}.$$

Время, по истечении которого будет спасен последний человек:

$$T_{c50} = 120 \text{ c} + 100 \text{ c} + 4460 \text{ c} = 4680 \text{ c} = 78 \text{ мин.}$$

Задача 18.2. (Для самостоятельного решения) В результате пожара в 12-этажном жилом доме люди оказались блокированными огнем и дымом на балконах А, Б, В (см. схему). По внешним признакам и данным разведки в момент начала спасательной операции опасность угрожает всем людям в равной мере. Вычислить время спасания всех людей при условии, что пожарные подразделения имеют в своем распоряжении достаточное количество личного состава для ее обслуживания и проведения спасательной операции. Вычислить необходимое количество средств спасания, если по оценке РТП требуемое в данной ситуации время проведения спасательной операции по спасению всех людей из всех мест сосредоточения составляет не более 30 минут. Задача решается по вариантам, указанным в табл. 18.9.

Схема к залаче 18.2

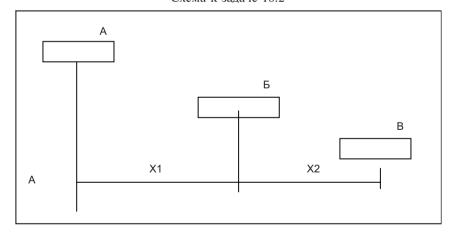


Таблица 18.9 (к задаче 18.2)

Ва-	Средство		Расстояние между балконами, м Число людей на балконах Номер этажа балко			ікона**			
риант	спасания*	X1	X2	Α	Б	В	Α	Б	В
1	Э	8	32	6	7	14	4	6	12
2	К	16	24	8	9	10	5	5	11
3	Л	24	16	10	11	6	6	4	10
4	Э	32	8	12	13	2	7	12	9
5	К	8	16	6	7	14	8	11	8
6	Л	16	24	8	9	10	9	10	7
7	Э	24	32	10	11	6	10	9	6
8	К	32	24	12	13	2	11	8	5
9	Л	8	16	6	7	14	12	7	4
10	Э	16	8	8	9	10	4	6	12
11	К	24	16	10	11	6	5	5	11
12	Л	32	24	12	13	2	6	4	10
13	Э	8	32	6	7	14	7	12	9
14	К	16	24	8	9	10	8	11	8
15	Л	24	16	10	11	6	9	10	7
16	Э	32	8	12	13	2	10	9	6
17	К	8	16	6	7	14	11	8	5
18	Л	16	24	8	9	10	12	7	4
19	Э	24	32	10	11	6	4	6	12
20	К	32	24	12	13	2	5	5	11
21	Л	8	16	6	7	14	6	4	10
22	Э	16	8	8	9	10	7	12	9
23	К	24	16	10	11	6	8	11	8
24	Л	32	24	12	13	2	9	10	7
25	Э	8	32	6	7	14	10	9	6
26	К	16	24	8	9	10	11	8	5
27	Л	24	16	10	11	6	12	7	4
28	Э	32	8	12	13	2	4	6	12
29	К	8	16	6	7	14	5	5	11
30	Л	16	24	8	9	10	6	4	10

*Э — эластичный рукав на коленчатом подъемнике

К — коленчатый подъемник

Л — автолестница

**высота этажа — 3 м.

Задача 18.3. В результате пожара в 12-этажном жилом доме на 10-ом этаже оказались блокированными огнем и дымом 12 чел. По данным разведки, в результате воздействия ОФП физическое состояние людей таково, что они не могут передвигаться. Вычислить время спасания всех людей способом выноса на руках при условии, что личный состав пожарных привлекаемых к проведению спасательной операции, насчитывает 24 чел., пожарные работают с применением СИЗОД и снабжают ими спасаемых людей. Вычислить требуемое число пожарных для проведения спасательной операции, если по оценке РТП требуемое в данной ситуации время проведения спасательной операции всех людей составляет не более 30 минут.

<u>Решение:</u> По формуле 18.8 время спасания первого человека T_{c1}:

 $T_{c1} = 1,2 \cdot 30 \cdot 1 \cdot 1,5/2 + 1 \cdot 1 = 28$ мин.

Время спасания последнего человека Т_{с12}:

 $T_{c12} = 1,2 \cdot 30 \cdot 12 \cdot 1,5/24 + 12 \cdot 1 = 39 \text{ мин.}$

По формуле 18.7 требуемое число пожарных для спасения всех людей за время не более 30 мин.:

 $N_n = 1,2 \cdot 30 \cdot 12 \cdot 1,5/(30 - 12 \cdot 1) = 36$ чел.

Время спасания первого человека при $N_{\pi} = 36$ чел.:

 $T_{c12} = 1,2 \cdot 30 \cdot 12 \cdot 1,5/3 + 1 \cdot 1 = 19 \text{ MuH}.$

Время спасания последнего человека при $N_{\rm u} = 36$ чел.

 $T_{c12} = 1,2.30.12.1,5/36 + 12.1 = 30 \text{ Muh.}$

Задача 18.4 (Для самостоятельного решения) По условиям задачи 18.2 распределить имеющихся в наличии 48 чел. пожарных для спасания людей способом выноса на руках так, чтобы время спасания всех людей было минимальным (во второй колонке табл. 18.9 к задаче 18.2 вместо указанных средств спасания Э, К, Л для всех вариантов принять: 48 чел. пожарных способом выноса на руках). По данным разведки, в результате воздействия ОФП физическое состояние людей таково, что они не могут передвигаться. Пожарные работают с применением СИЗОД и снабжают ими спасаемых людей. Вычислить требуемое число пожарных для проведения спасательной операции, если по оценке РТП требуемое в данной ситуации время проведения спасательной операции всех людей составляет не более 30 минут.

Задача 18.5. В результате пожара в 12-этажном жилом доме на 10-ом этаже оказались блокированными огнем и дымом 12 чел. Вычислить время спасания всех людей при помощи спасательной веревки при условии, что к спасательной операции привлекается 9 пожарных, трое из которых принимают на земле спасаемых людей, а 6-поднимаются на 10-й этаж для спуска спасаемых людей. Пожарные работают с применением СИЗОД. Начертить график зависимости числа спасенных людей от времени начала спасательной операции. Вычислить требуемое число пожарных для спуска спасаемых людей, если по оценке РТП требуемое в данной ситуации время проведения спасательной операции составляет не более 20 минут.

Решение: Шесть человек пожарных делятся на три группы по 2 чел. в каждой. На каждую группу приходится по 12/3 = 4 спасаемых человека. Каждая группа пожарных одновременно спустит на землю по одному спасаемому человеку. По формуле 4.10 время спасания одной из групп первого человека:

$$T_{c1} = 0,1\cdot30\cdot1\cdot1,5\cdot2/3 + 0,15\cdot30\cdot1,5 = 11,3$$
 мин.

Одновременно две другие группы пожарных спасут по одному человеку.

Время спасания одной из групп четвертого человека:

 $T_{c4} = 0.1 \cdot 30 \cdot 4 \cdot 1.5 \cdot 2/2 + 0.15 \cdot 30 \cdot 1.5 = 24.8 \text{ Muh.}$

Одновременно две другие группы также спасут четвертого человека. По формуле 18.9 определяем требуемое число пожарных для спасания всех людей за время не более 20 минут:

$$N_n = 0.1 \cdot 30 \cdot 12 \cdot 1.5 \cdot 2/(20 - 0.15 \cdot 30 \cdot 1.5) = 9$$
 чел.

Полученные 9 чел. пожарных делим на 3 группы по 3 чел. в каждой, которая будет спасать по 12:3 = 4 чел. Кроме того, на земле должно быть

еще по 1 чел. на каждую группу для приема спасаемых людей. Итого должно быть 9+3=12 чел. пожарных.

По формуле 18.10 определяем время спасания одной из групп первого человека:

 $T_{c1} = 0.1 \cdot 30 \cdot 1 \cdot 1.5 \cdot 2/3 + 0.15 \cdot 30 \cdot 1.5 = 9.8 \text{ MUH}.$

Одновременно две другие группы также спасут по одному человеку.

Время спасания одной из групп четвертого человека:

 $T_{c4} = 0.1 \cdot 30 \cdot 4 \cdot 1.5 \cdot 2/3 + 0.15 \cdot 30 \cdot 1.5 = 18.8 \text{ мин.}$

Одновременно две другие группы также спасут четвертого человека.

Задача 18.6 (Для самостоятельного решения) По условиям задачи 18.2 распределить имеющихся в наличии 28 чел. пожарных для спасания людей при помощи спасательной веревки так, чтобы время спасания всех людей было минимальным (во второй колонке табл. 18.9 к задаче 18.2. вместо указанных средств спасания Э, К, Л для всех вариантов принять: 28 чел. пожарных при помощи спасательной веревки). Пожарные работают с применением СИЗОД, число спасательных веревок не ограничено. Вычислить требуемое число пожарных для проведения спасательной операции, если по оценке РТП требуемое в данной ситуации время проведения спасательной операции всех людей составляет не более 30 минут.

Задача 18.7. Вычислить максимальное требуемое усилие, с которым пожарный должен натянуть спасательную веревку (сухая, синтетическая) для безопасного спуска спасаемого человека весом 100 кг, если спасательная веревка дважды охвачена вокруг карабина и перекинута через перила балкона. Коэффициент трения веревки по перилам считать равным коэффициенту трения по карабину.

Решение. Из формулы 18.13

 $\alpha_1 = 2 \cdot 2 \cdot 3,14 = 12,6$ радиан.

 \dot{K} этой величине необходимо прибавить угол охвата веревки вокруг перил, который равен:

 $\pi/2 = 1,6$ радиана.

Тогда $\alpha = 12,6 + 1,6 = 14,2$ радиана.

По формуле 18.11, с учетом данных табл. 18.8

 $P = 100 \cdot e^{-14,2\cdot0,08} = 32 \text{ K}\Gamma.$

Задача 18.8 (для самостоятельного решения). При пожаре на 10-ом этаже создалась такая ситуация, что, пожарный вынужден спасаться вместе со спасаемым человеком, привязав его к себе. Вычислить, на сколько оборотов спасательной веревкой (сухая, синтетическая) необходимо охватить карабин, чтобы максимальное усилие, с которым пожарный должен натягивать спасательную веревку при спуске, не превышало 12 кг. Вес пожарного со снаряжением — 85 кг, вес спасаемого человека — 70 кг.

Задача 18.9 (для самостоятельного решения). Пожарный, находящийся на 12-м этаже, травмировал руку так, что она оказалась не работоспособной. Создавшаяся обстановка на пожаре принуждает его осуществить самоспасание при помощи спасательной веревки. Вычислить, на сколько оборотов спасательной веревкой (сухая, синтетическая) необходимо

охватить карабин, чтобы максимальное усилие, с которым пожарный должен натягивать второй рукой спасательную веревку при спуске, не превышало 5 кг.

Вес пожарного со снаряжением — 85 кг.

Задача 18.10. Пожарные спасают людей при помощи спасательной веревки с 12-го этажа. Здание охвачено дымом и продуктами горения. Вычислить оптимальную скорость спуска спасаемого человека, при которой риск гибели в процессе спуска минимизируется. Показать расчетами, что при любой другой скорости спуска риск гибели спасаемого человека в процессе спуска будет увеличиваться (спасаемый человек снабжен СИЗОД). Для этой цели вычислить вероятности, указанные в табл. 18.10 при различных скоростях спуска спасаемого человека. Высоту этажа считать равной 3 м.

Таблица 18.10 (к задаче 18.10)

Скорость спуска спасаемого чел. V, м/с	P _{nr}	P _{ry}	P _{nry}
2			
3			
4			
5			
$V_{oh}-1$			
$ m V_{oh}$			
$V_{oh} + 1$			
$V_{\text{OH}} + 1$ $V_{\text{OH}} + 2$			

Задача 18.11. Вычислить оптимальную скорость спуска $V_{\text{он}}$ спасаемого человека, не снабженного СИЗОД, с различных высот H для случая, когда здание при пожаре снаружи охвачено дымом и продуктами горения. Вычисленные величины свести в табл. 18.11.

Таблица 18.11 (к задаче 18.11)

Номер этажа *	5	9	12	16	20	25	30	40
V_{oh}								

^{*} Высоту этажа считать равной 3м.

Решить задачу для случая, когда здание при пожаре охвачено дымом и продуктами горения с концентрацией C=0,5 от концентрации, наблюдаемой в горящем помещении.

19. ОЦЕНКА ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ ПО РЕАЛИЗАЦИИ ТАКТИЧЕСКИХ ВОЗМОЖНОСТЕЙ ПО ВСКРЫТИЮ И РАЗБОРКЕ КОНСТРУКЦИЙ

Для определения оценки эффективности действий пожарных подразделений по вскрытию строительных конструкций и влияние ее на тушение, были рассмотрены случаи тушения пожара, имеющего скрытые поверхности горения.

Известно, что процесс тушения пожаров основывается на определенных закономерностях в соотношении требуемого и фактического количеств сил и средств тушения. При этом необходимо соблюдение следующих условий:

$$Q_{\phi} \ge Q_{\tau p}, \tag{19.1}$$

$$I_{\phi} \ge I_{\tau p}, \tag{19.2}$$

где $Q_{\text{тр}}$ и $Q_{\phi \text{акт}}$ — соответственно требуемый и фактический расходы огнетушащих средств; $I_{\text{тр}}$ и $I_{\phi \text{акт}}$ — соответственно требуемая и фактическая интенсивности подачи огнетушащих средств.

Условие (19.1) является необходимым, но еще недостаточным для достижения желаемых результатов, так как оно может быть выполнено лишь формально. Поэтому в процессе тушения необходимо выполнять достаточное условие (19.2)

Для случая тушения распространяющихся пожаров на открытых пространствах условие (19.2) достигается правильным выбором типов стволов и боевых позиций ствольщиков; тактически грамотной работой ствольщиков со стволами на боевых позициях.

При тушении распространяющихся пожаров, скрытых от воздействия огнетушащих средств, для выполнения условия (19.2) необходимо соблюдение определенной расстановки сил и средств согласно принятым схемам. Но скрытые поверхности горения не позволяют эффективно использовать известные приемы расстановки сил и средств. В этом случае, даже при всех тактически грамотных действиях ствольщиков со стволами, огнетушащие средства без вскрытия конструкций не могут создать требуемых условий прекращения горения.

Своевременное вскрытие конструкций позволяет наиболее эффективно организовать подачу огнетушащих средств в скрытый очаг горения, что в конечном результате ускорит процесс прекращения горения.

Для распространяющихся пожаров развивающихся скрытно можно записать условие

$$I_{nr} + I_{n} = I_{\phi} \ge I_{rp},$$
 (19.3)

где I_{m} — интенсивность подачи огнетушащих средств участвующих в прекращении горения;

 I_{π} — потери огнетушащих веществ.

Наличие скрытых поверхностей горения резко увеличивает I_№ за счет значительных потерь (І.).

При тактически грамотном выполнении пожарными подразделениями действий направленных на прекращение горения условия (19.3) должно соблюдаться при $I_{h} > I_{nr}$.

Интенсивность потерь І должна быть сокращена, а интенсивность направленная на прекращение горения должна быть увеличена.

Этого можно достичь, исходя, из функциональной зависимости подачи огнетушащих средств от времени прекращения горения, которое позволяет сделать вывод, что подача огнетушащих средств, должна быть максимальной при минимальном времени прекращения горения.

Если в случаях тушения пожара на открытом пространстве увеличение I_{nr} достигается за счет ввода дополнительного количества сил и средств и правильной их расстановкой, то при тушении скрытых очагов горения, кроме того, появляется необходимость в обеспечении доступа к поверхности горения.

Следовательно, для успешного прекращения горения скрытых очагов горения потребуется дополнительное время на вскрытие конструкций. Это неизбежно приведет к некоторому увеличению общего времени тушения пожара которое условно (считая остальные затраты времени постоянными) можно записать:

$$t_0 = t_{n,r} + t_{n}, (19.4)$$

где t_0 — условно принятое общее время тушения скрытных очагов;

 $t_{\rm n.r.}$ — время, затраченное непосредственно на прекращение горения; $t_{\rm B}$ — затраты времени на боевое развертывание технических средств и вскрытие или разборку конструкций.

Для характеристики выполнения условия (19.2) введем понятие коэффициента подачи огнетущащих средств:

$$K_{\text{noc}} = t_{\text{nr}}/t_0,$$
 (19.5)

где $K_{\text{пос}}$ — коэффициент, позволяющий оценить фактическое время подачи огнетушащих средств непосредственно в очаг горения.

Учитывая, что увеличение I_{nr} зависит от величины сокращения t_{nr} , а оно, в свою очередь, определяется изменением $t_{\rm s}$, можно записать следующее условие:

$$t_{\text{B,TD}} \ge t_{\text{B,dD}},\tag{19.6}$$

где $t_{_{B,TD}}, t_{_{B,db}}$ — соответственно требуемое и фактическое время вскрытия конструкций, включая время развертывания технических средств для вскрытия.

Таким образом, условие (19.6) можно считать достаточным для условной ликвидации горения, и скрытые от воздействия огнетушащих веществ поверхности. Сокращение времени прекращения горения скрытых очагов будет достигаться сокращением фактического времени вскрытия конструкций. Для определения снижения затрат времени на вскрытие вво-

дится коэффициент эффективности проведения боевых действий по вскрытию конструкций:

$$K_{BK} = t_{B,\Phi}/t_{B,TP},$$
 (19.7)

 $K_{_{\rm BK}}=t_{_{\rm B,\varphi}}/t_{_{\rm B,Tp}},$ (19.7) где $K_{_{\rm BK}}$ — коэффициент, характеризующий потери времени при проведении боевого развертывания средств вскрытия и работ по вскрытию конструкций.

Объем работ по вскрытию конструкций на пожарах равен сумме работ, выполненных вручную и с использованием механизированных средств. При достаточно высокой подготовке в боевом развертывании средств вскрытия фактическая продолжительность боевых действий по вскрытию конструкций будет иметь вид:

$$t_{nv,h} = t_{nvn} + t_{nvn}, (19.8)$$

 $t_{_{\rm BK,\varphi}} = t_{_{\rm BKP}} + t_{_{\rm BKM}},$ (19.8) где $t_{_{\rm BKN}} -$ соответственно продолжительности вскрытия конструкций ручными и механизированными средствами.

Количественная и качественная сторона влияния использования механизированного пожарно-технического вооружения для вскрытия конструкций отражается коэффициентом уровня механизации боевых действий по вскрытию конструкций:

$$K_{M} = t_{BKM}/t_{BKO}, \tag{19.9}$$

где $K_{_{\rm M}}$ — коэффициент, характеризующий степень замены ручных операций по вскрытию конструкций механизированными.

Предельное значение К, теоретически может быть равно единице, лишь при полной механизации и автоматизации работ по вскрытию конструкций на пожарах, например, использование роботов. В настоящее время этого не достигнуто, поэтому в практических расчетах К, должен принимать значение $1 > K_{M} \ge 0$.

Решаем равенство (19.9) относительно $t_{\text{вкм}}$ и подставляем его значение в выражение (19.8):

$$t_{\text{вк.ф}} = t_{\text{вкф}} \cdot K_{\text{m}} + t_{\text{вкp}}, \text{ получим}$$
 $t_{\text{вк.ф}} = t_{\text{вкp}} / (1 - K_{\text{m}}).$ (19.10)

Выражение 19.10 при подстановке его в формулу 19.7 позволяет получить зависимость коэффициента эффективности проведения боевых действий по вскрытию от коэффициента уровня механизации

$$K_{BK} = \frac{\tau_{BKp}}{\tau_{TD,BK}(1 - K_{M})}, \tag{19.11}$$

Решая равенство (19.5) относительно $t_{mn,r}$, получим:

$$t_{\text{np.r}} = t_{\text{o}} \cdot K_{\text{noc}}. \tag{19.12}$$

Определив $t_{вк.ф}$ из выражения (19.7), получим равенство:

$$t_{\text{\tiny BK}, \Phi} = t_{\text{\tiny BK}, \text{\tiny TP}} \cdot \vec{K}_{\text{\tiny BK}}. \tag{19.13}$$

Подставляя выражение (19.12) и (19.13) в (19.4), и решая его относительно Кпос, получим:

$$K_{\text{noc}} = \frac{\tau_{\text{BK.Tp}}}{\tau_{\text{o}}} K_{\text{BK}} + 1$$
 (19.14)

Таким образом, коэффициент вскрытия конструкций оказывает значительное влияние на сокращение времени подачи огнетушащих средств $t_{\rm np,r}$, а тем самым и на весь процесс тушения пожаров, имеющих скрытые поверхности горения.

Учитывая равенство (19.11), получим по формуле (19.14) выражение, показывающее степень влияния на процесс тушения скрытых очагов горения уровня механизации боевых действий по вскрытию конструкций:

$$K_{\text{noc}} = \frac{\tau_{\text{вскр}}}{\tau_{\text{o}}(1 - K_{\text{M}})} + 1. \tag{19.15}$$

Дальнейшее повышение эффективности вскрытия конструкций может быть достигнуто только при использовании высокоорганизованных механических систем, полностью исключающих труд человека в экстремальных условиях.

По отношению к процессу тушения наиболее важным является соблюдение условия (19.3) при ($I_{\rm факт} > I_{\rm пр.r}$). Поэтому уровень механизации не должен быть менее 60%. Оптимальное значение $K_{\rm M}$ должно находится в пределах от 0,5 до 0,8.

20. ТАКТИЧЕСКИЕ ВОЗМОЖНОСТИ ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ ПРИ ИСПОЛЬЗОВАНИИ ИНДИВИДУАЛЬНЫХ СРЕДСТВ ЗАЩИТЫ

20.1 Результаты экспериментов работы звеньев ГДЗС

Боевые действия на пожаре часто проводятся в непригодной для дыхания среде, что усложняет действия пожарных подразделений пожарной охраны в целях безопасности от опасных факторов пожара, многие здания оборудуются системами противодымной защиты, использующими различные варианты приточно-вытяжных вентиляций.

В тех зданиях и сооружениях, где противодымная защита неисправна, или же отсутствует, пожарные применяют дымососы, дымовые клапаны, кондиционеры, фильтры, аспирационные устройства. Но большинство этих средств имеет ограниченное применение, так как они не всегда могут быть эффективно использованы в силу своих технических возможностей, особенностей планировки и назначения сооружений, характера развития пожара и распространения продуктов горения. Особенно сложно вести борьбу с задымлением в ограниченных помещениях, имеющих ограниченные возможности для вентиляции, типа подвальных и полуподвальных помещениях, шахт, тоннелей, герметичных аппаратов и других вариантов помещений и сооружений.

Отсутствие эффективных средств борьбы с задымлением в ряде случаев является причиной перехода пожара в развитую стадию.

Сложность и опасность выполняемых работ на пожаре вызывает необходимость применения различных средств индивидуальной защиты от тепла и газов.

На вооружении государственной противопожарной службы находятся средства индивидуальной защиты органов дыхания и зрения, теплоотражательные и теплоизолирующие костюмы, что позволяет успешно решать задачи по тушению пожаров и ликвидации аварий в непригодной для дыхания среде.

Работа звеньев ГДЗС в зданиях повышенной этажности связана с подъемом на значительную высоту. Результаты таких экспериментов приведены в табл. 20.1.

С целью оценки функционального состояния пожарных во время подъема на очень большие высоты были проведены эксперименты на одном республиканском радиотелевизионном передающем центре.

Таблица 20.1 Результаты экспериментов по проведению спасательных работ по лестничным маршам

17200 PARTOSITA							
Действия	Этаж	Время, с					
	10	178					
Подъем с первого этажа здания звена ГДЗС в составе 6 человек без включения в КИП	14	260					
	16	372					
человек оез включения в купт	20	408					
	28	661					
	10	268					
	14	441					
То же, с включением в КИП	16	409					
	20	786					
	28	1663					
	28	1736					
С БПЭС 4	20	1180					
Спуск на первый этаж здания звена ГДЗС в составе 4	16	928					
человек со спасаемым (90 кг) без включения в КИП	14	770					
	10	530					
	28	2324					
	20	1540					
То же, с включением в КИП	16	1088					
•	14	924					
	10	620					

По условиям эксперимента пожарные в полном боевом снаряжении в кислородных изолирующих противогазах поднимались по лестнице на отметку 165 м. Темп движения определялся самими участниками. Каждое звено сопровождал начальник караула. Перед началом учений, а так же на отметках 60, 100, 120, 140 и 165 м сотрудники медицинского управления измеряли АД, ЧСС. В результате экспериментов установлено, что для подъема на отметку 165 м участникам потребовалось $31,1 (\pm 2,2)$ мин. Без отдыха 15,5 мин. Потребление кислорода составила $2,05 (\pm 0,52)$ л/мин, а ЧСС на отметке 100 м оказалась 130 уд/мин.

Сводные данные эксперимента представлены в табл. 20.2.

Таблица 20.2

Параметры исследований	Высота подъема						
параметры исследовании	0	60	100	120	140	165	
Время подъема, мин	0	6,7	12,7	17,2	24,6	31,1	
Время медицинского обследования, мин	-	3,5	2,7	5,4	4,0	-	
Давление кислорода в баллонах, МПа	19,4	-	-	-	-	13	

В соответствии с принятой в ПО классификацией, выполненная работа относится к очень тяжелой.

Анализируя изменение средней скорости подъема можно отметить, что на этапах 0-60 м и 60-100 м проходит проба сил, которая завершается выбором наиболее рациональной скорости подъема близкой к 10 м/мин.

В реальных условиях не исключено, что подъем звеньев ГДЗС будет проходить при повышенной температуре окружающей среды, о чем будет

сказано ниже, в этом случае предельное физиологическое состояние наступит раньше.

Очевидно, что для восстановления нормального функционального состояния газодымозащитникам необходимо время на отдых, поэтому, для эффективного выполнения боевой задачи требуется на одном направлении 2-3 звена ГДЗС, причем звено, включившееся в работу сразу после подъема, должно быть заменено через 3-5 мин с последующим чередованием через 5-10 мин в зависимости от условий и характера работы. Для успешного выполнения задачи необходимо исключить наступление предельного или околопредельного состояния организма, что может быть достигнуто правильно выбранным режимом подъема по лестнице, который соответствует такому положению, когда режим работы равен режиму отдыха. Здесь было установлено, что отделение без включения в СИЗОД со скоростью 10-12 м/мин может подняться на высоту 165 м без промежуточных остановок.

Более серьезные ограничения по использованию звеньев ГДЗС возникают при анализе данных потребления кислорода. В соответствии с известными требованиями контрольное давление, при котором газодымозащитник должен выйти на свежий воздух, в данном случае составляет 12.8 МПа. По существу это значение равно остаточному давлению в баллонах КИПов после подъема на конечную высоту. Необходимо иметь в виду, что минимальное давление кислорода для возвращения звена на чистый воздух устанавливается по показанию манометра противогаза газодымозащитника, у которого расход кислорода при следовании к месту работы был максимальным. Так же следует добавить, что время, затраченное на подъем в задымленной или слабоосвещенной лестничной клетке, увеличивается более чем в 1.5-2 раза. Это приведет к еще большему расходу кислорода. Следовательно, у звена ГДЗС на проведение боевой работы не остается запаса кислорода. Расчеты по расходу кислорода на выполнение таких упражнений, как спасательные работы и ликвидация пожара показывают, что высота ведения боевых действий должна быть ограничена 80-100 м. Для расширения тактических возможностей необходима организация на близлежащих этажах КПП с необходимым запасом кислородных баллончиков и регенеративных патронов.

20.2 Факторы, снижающие тактические возможности пожарных подразделений при работе в СИЗОД

Основными из них являются:

- количество включений;
- продолжительность работы при каждом включении;
- высокая температура и влажность;
- низкая температура.

С целью поддержания высокой работоспособности и сохранения здоровья, работа пожарных в СИЗОД, в течении суточного дежурства не должна превышать трех аппарато-смен. Длительность аппарато-смен для работы в СИЗОД всех типов условно принята равной 90 мин.

После работы в СИЗОД при температуре до 300°С (нормальная температура) в течении полной аппарато-смены (90 мин) звено (отделение) ГДЗС к повторной работе должно допускаться после отдыха продолжительностью не менее 60 мин. Отступление от этого правила допускается при необходимости спасания людей, а так же в случаях, когда этого настоятельно требует обстановка на пожаре (аварии).

При работе в СИЗОД при этих же условиях более короткими во времени заходами в непригодной для дыхания среде, продолжительность отдыха после работы может быть сокращена. Рекомендованное время отдыха в зависимости от длительности работы в противогазе приведено в табл. 20.3.

Продолжительность отдыха в зависимости от длительности работы в противогазе приведено в табл. 20.3

Таблица 20.3

Продолжительность работы,	Продолжительность отдыха после работы, мин		
мин	средней тяжести	тяжелой	
15	5	10	
30	10	15	
45	15	20	
60	20	30	
75	30	40	
90	40	60	

При этом количество повторных заходов звена ГДЗС продолжительностью не менее 30 мин., при тушении одного пожара необходимо ограничивать, желательно не более трех, а затем подменять звено из резерва и предоставить ему отдых не менее 60 мин.

При выполнении тяжелых работ, связанной с переноской на руках спасаемых людей и эвакуации имущества, вскрытием и разборкой конструкций необходимо после каждых 2-3 мин делать микропаузы для отдыха.

Допустимая продолжительность непрерывной работы в противогазах при отсутствии тепловой радиации зависит от температуры окружающей среды и относительной влажности воздуха.

В табл. 20.4 приведено допустимое время работы газодымозащитников для наиболее типичных условий, создающихся на пожарах в помещениях, по трем диапазонам относительной влажности воздуха.

Первый диапазон низкой влажности (сухое помещение до 60%), встречающейся при проведении разведки в условиях высокой температуры, второй — повышенной влажности (влажное помещение 60-75%), наблюдающейся при тушении пожара водой и пеной в жилых и производственных помещениях с высокой температурой, третий — высокой влажности (сырое помещение выше 85%), возникающей при проведении разведки и работе с водяными и пенными стволами в ограниченном пространстве, например,

в тоннелях, подземных галереях, каналах кабельных коммуникаций, очень больших подвалах и тому подобных местах.

Таблица 6.4 Допустимое время работы пожарных-газодымозащитников в СИЗОД в зависимости от температуры и влажности воздуха

		• •	•	
	Допустимое время, мин			
Температура воздуха, °С	При относительной влажности, %			
	до 60	60-75	выше 75	
31	90	90	90	
35	90	70	50	
40	60	50	25	
45	50	40	20	
50	45	35	15	
55	40	30	10	
60	35	20	5	
65	30	20	_	
70	25	15	-	

Пожарным звена ГДЗС после выхода из зоны высокой температуры, где они находились полное время, предусмотренное табл. 20.4 должен быть предоставлен отдых в условиях нормальной температуры на свежем воздухе (зимой в теплом помещении или в отапливаемом автобусе) продолжительностью не менее 90 мин.

При непрерывной работе со временем пребывания в зоне высокой температуры, менее предусмотренного табл. 20.4 продолжительность отдыха может быть пропорционально сокращена.

При кратковременных повторных заходах суммарное время работы в зоне высокой температуры не должно превышать более чем на 25%, указанное в табл. 20.4, после чего звено ГДЗС должно быть подменено и ему должен быть предоставлен отдых в течении не менее 90 мин.

При низких температурах общая продолжительность работы звена (отделения) ГДЗС в течении суточного дежурства караула, с целью сохранения работоспособности, должна ограничиваться. Суммарное время работы в СИЗОД не должно составлять в течении суток более трех аппаратосмен. Время непрерывной работы в противогазе, в условиях низких температур и продолжительность отдыха перед повторной работой, должны определяться, исходя из табл. 20.5

Таблица 20.5 Допустимое время работы в СИЗОД при низкой температуре

Температура воздуха, °С	Продолжительность работы, мин	Продолжительность отдыха, мин
От 0 до -15	90	90
От −15 до −30	60	60
От –30 до -45	30	30

При работе отдельными заходами с более коротким временем пребывания при низкой температуре, продолжительность отдыха должна пропорционально уменьшаться.

20.3. Расчет параметров работы в СИЗОД

Для расчета параметров работы в СИЗОД необходимо рассмотреть несколько терминов и обозначений.

- Р, вых контрольное значение давления кислорода (воздуха), при котором звену ГДЗС необходимо прекратить выполнение работы в непригодной для дыхания среде и выходить на свежий воздух;
- Р ... значение максимального падения давления кислорода (воздуха) при движении звена ГДЗС от поста безопасности до конечного места работы (определяется командиром звена);
- Р_{мр} наименьшее значение давления кислорода (воздуха) в баллоне по прибытию к месту работы звена ГДЗС;
- Р_{их} наименьшее в составе звена значение давления кислорода (воздуха) в баллоне перед входом в непригодную для дыхания среду (на посту безопасности);
- $P_{\text{\tiny DB3}}$ максимально допустимое значение падения давления при проведении разведки;
- Р_{рел} значение остаточного давления кислорода (воздуха) в баллоне, необходимого для устойчивой работы редуктора;
 - $\tau_{_{\!{\text{ВКЛ}}}}$ местное время при включении звена в СИЗОД;
 - $\tau_{\text{раб}}$ время работы звена ГДЗС у очага пожара;
- $au_{\text{обш}}$ общее время работы звена ГДЗС в непригодной для дыхания среде;
- $au_{\text{возвр}}$ ожидаемое время возвращения звена ГДЗС из задымленной зоны;
- $\tau_{_{DB3}}$ максимально допустимое время проведения разведки звеном ГДЗС;
 - V вместимость кислородного (воздушного) баллона, л;
- О средний расход кислорода с учетом промывки дыхательного мешка кислородом, срабатывания легочного автомата и т.д.
- Q средний расход воздуха при работе в дыхательном аппарате, л/ мин;
 - ${
 m K}_{\mbox{\tiny зап}}$ коэффициент запаса на непредвиденные обстоятельства;

К_{сх} – коэффициент сжимаемости воздуха при давлении 300 МПа;

Единицы измерения: $P - (\kappa rc/cm^2)$, T - мин.

При проведении расчетов необходимо использовать технические характеристики СИЗОД табл. 20.6.

Основные формулы для расчета.

- 1. $P_{K BBIX} = P_{K MP} + K_{3} \cdot P_{K MP} + P_{peq};$ 2. $T_{pa6} = (P_{MP} P_{K BBIX}) \cdot V/Q;$ 3. $T_{o6III} = (P_{BX} P_{peq}) \cdot V/Q;$ 4. $T_{BO3BP} = T_{BKT} + T_{o6III}.$

- 5. В реальной обстановке звеньям ГДЗС не всегда удается в ходе проведения разведки обнаружить очаг пожара, поэтому:

$$\begin{split} &P_{_{BX}} = P_{_{pa3}} + P_{_{K \; BbiX}} = 2 \cdot P_{_{pa3}} + K_{_{3}} \cdot P_{_{pa3}} + P_{_{pe,f}}; \\ &P_{_{BX}} = P_{_{pa3}} \cdot (2 + K_{_{3}}) + P_{_{pe,f}}; \\ &P_{_{pa3}} = (P_{_{BX}} - P_{_{pe,f}})/(2 + K_{_{Cx}}); \end{split}$$

Таким образом, допустимое время разведки составит:

$$T_{pas} = P_{pas} \cdot V/Q \cdot K_{cw}$$
.

Таблица 20.6

Противогазы										
Характеристика	КИП-8	P-12M	P-30	РВЛ-1	УРАЛ-7	УРАЛ-10				
V	1	2	2	1	2	2				
P	30	30	30	30	30	30				
Q	2	2	2	2	2	2				
	Дыхательные аппараты									

дыхатольные антараты										
Характеристика	АИР-98 МИ; ПТС Профи; АП-2000; АП-98-7К	АСВ со встр. ман.	АСВ с вын. ман.							
V	7	8	8							
Рред	10	_	10							
Q	30	30	30							
Ксж	1.1	-	_							

Для определения $P_{\kappa,\text{вых}}$ необходимо, во-первых, определить значение максимального падения давления кислорода (кгс/см²) при движении звена ГДЗС от поста безопасности до конечного места работы (определяется командиром звена ГДЗС), затем прибавить к нему половину этого значения на непредвиденные обстоятельства и значение остаточного давления кислорода в баллоне (30 кгс/см²), необходимого для устойчивой работы редуктора.

При работе в подземных сооружениях, метрополитене, многоэтажных подвалах со сложной планировкой, трюмах кораблей, зданиях повышенной этажности расчет $P_{\kappa,\text{вых}}$ проводится с учетом того, что запас кислорода на непредвиденные обстоятельства обратного пути должен быть увеличен не менее чем в 2 раза, т.е. должен быть равным, как минимум, значению максимального падения давления кислорода в баллонах на пути движения к месту работы.

Задача 20.1. Перед входом звена ГДЗС в непригодную для дыхания среду давление кислорода в баллонах КИП-8 составляло 180, 190 и 200 кгс/см². За время продвижения к месту работы снизилось соответственно до 160, 165 и 180 кгс/см², т.е. максимальное падение давления кислорода составило 25 кгс/см². По условию контрольное давление кислорода ($P_{\kappa,\text{вых}}$), при достижении которого необходимо выходить на свежий воздух, будет равно:

$$P_{_{\text{K.Bblx}}} = P_{_{\text{K MP}}} + K_{_3} \cdot P_{_{\text{K MP}}} + P_{\text{peq}} = 25 + 12,5 + 30 = 67,5 \text{ kgc/cm}^2.$$

Для определения времени работы звена ГДЗС у очага пожара ($T_{\text{раб}}$) необходимо определить наименьшее в составе звена ГДЗС значение давления кислорода в баллоне противогаза непосредственно у очага пожара, затем вычесть из него значение давления кислорода, необходимого для обеспечения работы противогаза при возвращении на свежий воздух ($P_{\kappa,\text{вых}}$), полученную

разность умножим на вместимость кислородного баллона (л) и разделить на средний расход кислорода (2 л/мин) при работе в противогазе.

Задача 20.2. Перед входом звена ГДЗС в непригодную для дыхания среду давление кислорода в баллонах КИП-8 составило 180, 190 и 200 кгс/см². За время продвижения к месту работы оно снизилось соответственно до 160, 165 и 180 кгс/см², т.е. максимальное падение давления кислорода составило 25 кгс/см².

Время работы у очага пожара будет равно:

$$\tau_{\text{раб}} = \frac{(P_{\text{мр}} - P_{\text{к.вых}}) \cdot V}{O} = \frac{(160 - 67, 5) \cdot 1}{2} = 46,25 \,\text{мин},$$

гле:

- 160 кгс/см² наименьшее давление кислорода в баллоне по прибытию к очагу пожара;
 - 67,5 кгс/см 2 P_{KRMX} (см. задачу 20.1)
 - 1 л вместимость кислородного баллона КИП-8
- 2 л/мин средний расход кислорода с учетом промывки дыхательного мешка кислородом, срабатывания легочного автомата и т.д.

Для расчета общего времени работы звена ГДЗС в непригодной для дыхания среде ($\tau_{\text{обш}}$), необходимо перед входом в непригодную для дыхания среду определить наименьшее в составе звена ГДЗС значение давления кислорода в баллоне и вычесть из него значение давления кислорода, необходимого для устойчивой работы редуктора. Полученный результат умножить на вместимость кислородного баллона (л) и разделить на средний расход кислорода при работе в противогазе (2 л/мин).

Задача 20.3. Звено ГДЗС включилось в респираторы "Урал-10" в 12 ч 15 мин. Давление кислорода в баллонах на это время составляло 180, 190 и 200 кгс/см². Общее время работы в непригодной для дыхания среде с момента включения будет равно:

$$\tau_{\text{раб}} = \frac{(180 - 30) \cdot 2}{2} = 150 \text{ мин} = 2 \text{ ч } 30 \text{ мин} .$$

Зная значение $\tau_{\text{общ}}$ и время включения в противогаз, можно определить ожидаемое время возвращения звена ГДЗС ($T_{\text{возв.}}$) из задымленной зоны, которое будет составлять:

$$T_{\text{возв}} = 12 \text{ ч } 15 \text{ мин} + 2 \text{ ч } 30 \text{ мин} = 14 \text{ ч } 45 \text{ мин}.$$

Для определения давления воздуха при котором необходимо выходить $P_{\kappa,\text{вых.}}$ при работе в дыхательном аппарате (АИР-317), а так же ACB-2 (с выносным манометром) необходимо, во-первых, определить значение максимального падения давления воздуха (кгс/см²) при движении звена ГДЗС от поста безопасности до конечного места работы (определяется командиром звена ГДЗС). Затем прибавить к нему половину этого значения (кгс/см²) на непредвиденные обстоятельства и значение остаточного давления воздуха в баллоне (10 кгс/см²), которое необходимо для устойчивой работы редуктора.

Задача 20.4. Перед входом звена ГДЗС в непригодную для дыхания среду давление воздуха в баллонах АИР-317 составило 270, 290 и 300кгс/ см². За время продвижения к месту работы оно снизилось соответственно до 250, 265, 280 кгс/см², т.е. максимальное падение давления воздуха составило 25 кгс/см². Контрольное давление воздуха (Рк вых.) при достижении которого необходимо выходить на свежий воздух, будет равно:

$$P_{KBIJX} = 25 + 12.5 + 10 = 47.5 \text{ KFC/cM}^2$$

 $P_{_{\rm K \, BbJX}} = 25 + 12.5 + 10 = 47.5 \,\,{\rm KFC/cM^2}.$ При работе в ACB-2 (с встроенным манометром) $P_{_{\rm K, BbJX}}$ соответствует значению максимального падения давления воздуха (кгс/см²) при движении звена ГДЗС от поста безопасности до конечного места работы (без учета резерва воздуха).

Залача 20.5. Перед входом звена ГДЗС в непригодную для дыхания среду давление воздуха в баллонах АСВ-2 (с встроенным манометром) составляло 145, 155 и 160 кгс/см² (без учета резерва). За время продвижения к месту работы давление снизилось соответственно до 125, 130 и 140 кгс/ см², т.е. максимальное падение давления воздуха составило 25 кгс/см². Контрольное давление воздуха (Рк вых) при достижении которого необходимо выходить на свежий воздух (без учета резерва) будет равно

$$P_{K,BMX} = 25 \text{ KFC/cM}^2$$
.

Примечание. При появлении сопротивления на вдохе (показания стрелки манометра 0 кгс/см²) должен быть включен резерв воздуха, для чего рукоятку "Р" переводят в положение "О", при этом давление по манометру должно быть не менее 30-40 кгс/см².

Для определения времени работы в дыхательных аппаратах у очагов пожара (троб) при работе в АСВ-2 (с выносным манометром) необходимо определить наименьшее в составе звена ГДЗС значение давления воздуха в баллонах дыхательного аппарата непосредственно у очага пожара, затем вычесть из него давление воздуха, необходимое для обеспечения работы дыхательного аппарата при возвращении на свежий воздух (P_{ν} выу), полученную разность умножить на общую вместимость баллонов (л) и разделить на средний расход воздуха при работе в аппаратах (30 л/мин).

Залача 20.6. Перед входом звена ГДЗС в непригодную для дыхания среду давление воздуха в баллонах АСВ-2 (с выносным манометром) составляло 170, 190 и 200 кгс/см². За время движения к месту работы оно снизилось соответственно до 150, 165 и 180 кгс/см2, т.е. максимальное падение давления воздуха составило 25 кгс/см². Время работы у очага пожара будет равно:

$$\tau_{\text{pa6}} = \frac{(150 - 47,5) \cdot 8}{30} = 27 \text{ MUH},$$

- 150 кгс/см² наименьшее давление воздуха в баллонах при прибытию к очагу пожара;
 - 47,5 кгс/см 2 $P_{_{KBMY}}$ (См. задачу 20.4).
 - 8 л общая вместимость баллонов АСВ-2
 - 30 л/мин средний расход воздуха при работе в дыхательном аппарате.

Для определения $\tau_{\text{раб}}$ при работе ACB-2 (с встроенном манометром) у очага пожара необходимо определить наименьшее в составе звена ГДЗС значение давления воздуха в баллонах дыхательного аппарата непосредственно у очага пожара (без учета резерва воздуха), затем вычесть из него значение давления воздуха, необходимого для обеспечения работы дыхательного аппарата при возвращении на свежий воздух ($P_{\text{вых}}$), полученную разность умножить на общую вместимость баллонов (л) и разделить на средний расход воздуха при работе в аппаратах (30 л/мин).

Задача 20.7. Перед входом звена ГДЗС в непригодную для дыхания среду давление воздуха в баллонах АСВ-2 без учета резерва воздуха составляло 145, 150 и 160 кгс/см². За время продвижения звена ГДЗС к месту работы оно снизилось соответственно до 125, 125 и 140 кгс/см², т.е. максимальное падение давления воздуха составило 25 кгс/см². Время работы у очага пожара будет равно:

$$\tau_{\text{pa6}} = \frac{(125 - 25) \cdot 8}{30} = 27 \text{ MUH},$$

гле:

- 125 кгс/см² наименьшее давление воздуха в баллонах по прибытию к очагу пожара;
 - $-25 \,\mathrm{krc/cm^2} P_{\mathrm{KBHY}} \,\mathrm{(см. задачу 20.5)}$
 - 8 л общая вместимость баллонов ACB-2;
 - 30 л/мин средний расход воздуха при работе в дыхательных аппаратах.

Для определения $\tau_{\text{раб}}$ при работе в дыхательных аппаратах АИР-317 необходимо определить наименьшее в составе звена ГДЗС значение давления воздуха в баллоне дыхательного аппарата непосредственно у очага пожара, затем вычесть из него давление воздуха, необходимого для обеспечения работы дыхательного аппарата при возвращении на свежий воздух ($P_{\text{к.вых}}$), полученную разность умножить на общую вместимость баллона (ов) (л) и разделить на средний расход воздуха при работе в аппаратах (30 л/мин) и коэффициент сжимаемости воздуха $K_{\text{гж}} = 1,1$.

Задача 20.8. Перед входом звена ГДЗС в непригодную для дыхания среду давление воздуха в баллонах АИР-317 составляло 270, 290 и 300 кгс/см². За время продвижения к месту работы оно снизилось соответственно до 250, 265 и 280 кгс/см², т.е. максимальное падение давления воздуха составило 25 кгс/см². Время работы у очага пожара будет равно:

$$\tau_{\text{раб}} = \frac{(250 - 47,5) \cdot 8}{30 \cdot 1,1} = 43 \,\text{мин} \,\,,$$

гле:

- 250 кгс/см 2 наименьшее давление воздуха в баллонах по прибытию к очагу пожара.
 - $-47.5 \text{ кгс/см}^2 P_{\text{к вых}}$ (см. задачу 20.4)
 - 7 л вместимость баллона АИР-317
 - 30 л/мин средний расход воздуха при работе в дыхательном аппарате;
 - $1,1 K_{cx}$.

Для расчета общего времени работы звена ГДЗС в непригодной для дыхания среде $\tau_{\text{общ}}$ необходимо перед входом в непригодную для дыхания среду определить в составе звена ГДЗС наименьшее значение давление воздуха в баллоне (ах) и вычесть из него значение давления воздуха, необходимое для устойчивой работы редуктора. Полученный результат умножить на вместимость баллона (л) и разделить на средний расход воздуха при работе в дыхательном аппарате (30 л/мин) и коэффициент сжимаемости воздуха $K_{\rm cx}$.

Задача 20.9. Звено ГДЗС включилось в дыхательные аппараты АИР-317 в 12 ч 15 мин, при этом давление воздуха в баллонах составило 300, 270, 280 кгс/см². Общее время работы в непригодной для дыхания среде с момента включения в дыхательный аппарат будет равно:

$$\tau_{\text{общ}} = \frac{(270 - 10) \cdot 7}{30 \cdot 1.1} = 55 \,\text{мин}$$

гле

- 270 кгс/см² наименьшее давление воздуха в баллоне при включении в дыхательные аппараты;
- $10 \ \mathrm{krc/cm^2}$ давление воздуха, необходимое для устойчивой работы редуктора;
 - 7 л вместимость баллона AUP 317;
 - 30 л/мин средний расход воздуха при работе в дыхательном аппарате;
 - $1,1 K_{cx}$.

Зная значение $\tau_{\text{общ}}$ и время включения в дыхательный аппарат, можно определить ожидаемое время возвращения звена ГДЗС ($T_{\text{возв}}$) из задымленной зоны, которое составляет:

 $T_{\text{возв}} = 12 \text{ ч } 15 \text{ мин} + 55 \text{ мин} = 13 \text{ ч } 10 \text{ мин}.$

21. РАСЧЕТ СИЛ И СРЕДСТВ ДЛЯ ТУПЕНИЯ ПОЖАРОВ

Расчет сил и средств проводится до пожара (при разработке оперативно-служебных документов, при решении пожарно-тактических задач) на месте пожара и после ликвидации пожара при его тушении и исследовании.

Среди множества показателей, необходимых для расчета, особое значение представляет расчет площади тушения, площади пожара, принцип расстановки сил и средств, участвующих в тушении пожара. От правильности определения принципа расстановки сил и средств зависит точность всего расчета, а также успех тушения пожара.

В зависимости от того, как введены и расставлены силы и средства, тушение в данный момент может осуществляться с охватом всей площади пожара, только части ее или путем заполнения объема огнетушащими средствами. При этом расстановку сил и средств выполняют по всему периметру площади пожара или по фронту его локализации (рис. 21.1, 21.2).

Если в данный момент сосредоточенные силы и средства обеспечивают тушение пожара по всей площади, охваченной горением, то расчет их производят по площади пожара, которая численно равняется площади тушения.

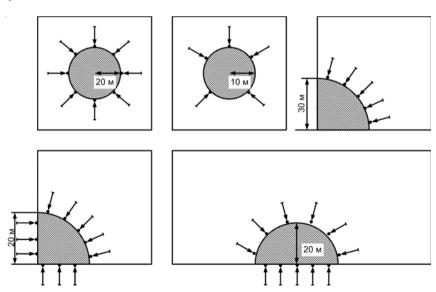


Рис. 21.1. Принципы расстановки сил и средств при угловой и круговой формах

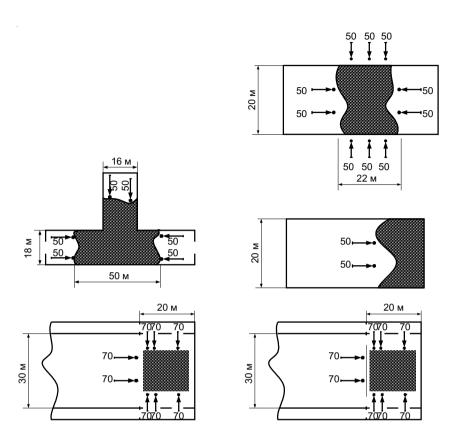


Рис. 21.2. Принципы расстановки сил и средств при прямоугольной форме площади пожара

Если в данный момент обработка всей площади пожара огнетушащими средствами не обеспечивается, то силы и средства сосредотачивают по периметру или фронту локализации для поэтапного тушения. Расчет их в этом случае осуществляют по площади тушения на первом этапе, считая от внешних границ площади пожара.

Площадь тушения S_{τ} — это часть площади пожара, которая используется при расчете требуемого количества сил и средств на ликвидацию горения (рис. 21.3, 21.4). Площадь тушения водой зависит от глубины обработки горящего участка h. Практикой установлено, что по условиям тушения пожаров эффективно используется примерно третья часть длины струи, поэтому в расчетах глубину обработки горящей площади принимают для ручных стволов 5 м, а для лафетных — 10 м. Следовательно, площадь тушения будет численно совпадать с площадью пожара при ее ширине

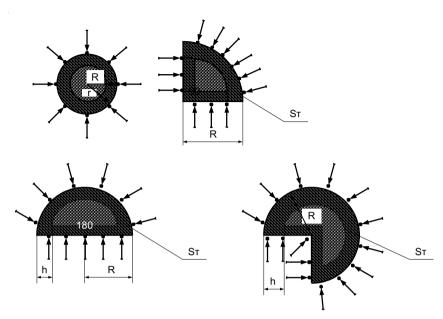
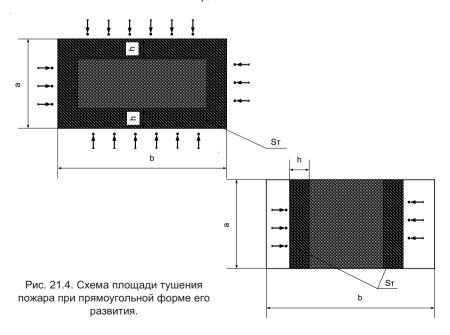



Рис. 21.3. Схема площади тушения пожара при круговой и угловой формах его развития

(для прямоугольной формы), диаметре (для круговой формы) и радиусе (для угловой формы развития), не превышающих 10 м при подаче ручных стволов, введенных по периметру навстречу друг другу, и 20 м — при тушении лафетными стволами. В остальных случаях площадь тушения принимают равной разности общей площади пожара и площади, которая в данный момент водяными струями не обрабатывается.

В жилых и административных зданиях с помещениями небольших размеров расчет сил и средств целесообразно проводить по площади пожара, так как средства тушения можно вводить по нескольким направлениям: изнутри — со стороны лестничных клеток и снаружи — через оконные проемы. Однако и в этих случаях не исключено поэтапное тушение, особенно при пожарах в зданиях с коридорной системой планировки.

При расстановке сил и средств по длине внешней границы горящей площади необходимо учитывать также периметр тушения, который в любой форме развития меньше фактического периметра.

Периметр тушения $P_{\scriptscriptstyle T}$ — это длина внешней границы площади пожара в данный момент, по которой осуществляется подача воды и обеспечивается непосредственная обработка поверхности горения (см. рис. 21.3, 21.4), за вычетом отрезков со стороны соседних участков, по длине равных глубине тушения стволом h. В круговой форме площади пожара периметр тушения сокращается за счет изменения длины окружности от внешней границы в глубину.

Общую площадь пожара на различные промежутки времени определяют в следующей последовательности:

- определяем время свободного развития пожара на момент подачи стволов первым прибывшим подразделением

$$\tau_{_{CB}}=\tau_{_{AC}}+\tau_{_{CA}}+\tau_{_{6.p.}},$$

гле

 $\tau_{6,p}$ — время боевого развертывания, мин.

- определяем расстояние, на которое распространится фронт за τ_{cs} :

$$L_1 = 5V_{\pi} + V_{\pi}\tau_2,$$

$$\tau_2 = \tau_{\rm cb} - 10.$$

Линейную скорость распространения горения в первые 10 мин от начала возникновения пожара необходимо принимать половинной от табличного значения ($V_{\pi}=0.5V_{\pi}^{\text{норм}}$) (Приложение 1 НПБ 301-96). Спустя 10 мин и до момента введения средств тушения первыми подразделениями, прибывшими на пожар, линейная скорость при расчете берется равной табличной (т.е. $V_{\pi}=V_{\pi}^{\text{норм}}$), а с момента введения первых средств тушения (стволов, генераторов и т.д.) до момента локализации пожара она вновь принимается равной $V_{\pi}=0.5V_{\pi}^{\text{норм}}$;

- полученное расстояние откладываем в масштабе по схеме объекта (рис. 21.5);

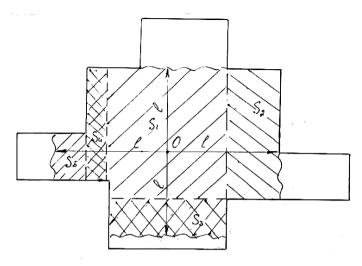


Рис. 21.5 Схема, поясняющая определение площади пожара

- определяем фигуру площади пожара;
- полученную фигуру разбиваем на элементарные фигуры (треугольник, прямоугольник, квадрат, сектор, круг);
- по известным формулам математики определяем площадь \mathbf{S}_{i} каждой элементарной фигуры;
- полученные значения суммируем и получаем значение и площадь пожара $S_{\text{общ}} = \sum S_{i}.$

При расчете сил и средств важно каждый последующий элемент определения согласовать с предыдущим, учесть специфику пожарной нагрузки, вид пожара и сложившуюся обстановку. Силы и средства, необходимые для тушения пожаров, рассчитывают аналитическим методом (по формулам) с использованием справочных таблиц, графиков и специальных линеек (пожарно-технических экспонометров). Наиболее точным является аналитический расчет.

Аналитический расчет сил и средств проводят в соответствии с приведенным ниже порядком:

- 1. Определяем площадь пожара на различные промежутки времени, по которой принимают необходимую расчетную схему: круг, сектор круга или прямоугольник (методика определения изложена выше);
- 2. Определяем принцип расстановки сил и средств для тушения пожара. Следует помнить, что этот элемент расчета имеет особое значение в последующих вычислениях;
- 3. Определяем необходимый параметр тушения пожара (площадь пожара или тушения);

Размеры тушения реальных пожаров с учетом обстановки можно определить по масштабным планам, картам, служебным, оперативным и

другим документам, содержащим сведения о размерах зданий, отдельных помешений, сооружений. Геометрические параметры определяются измерением.

- 4. Определяем требуемый расход огнетушащего средства на тушение пожара и защиту объектов, которым угрожает опасность;
- 5. Рассчитываем необходимое количество технических приборов подачи огнетушащих средств (стволов, пеногенераторов, пеноподъемников и др.) на ликвидацию горения и защиту объектов, которым угрожает опасность. Помимо сказанного, необходимое количество технических приборов подачи огнетушащих средств определяют по следующим уравнениям:

Водяных стволов на ликвидацию горения

$$N_{cr}^{T} = S_{r}/S_{cr}^{T},$$
 (21.1)

$$N_{cr}^{T} = S_{r}/S_{cr}^{T},$$

$$N_{cr}^{T} = P_{r}/P_{cr}^{T}, N_{cr}^{T} = \Phi_{r}/\Phi_{cr}^{T},$$
(21.1)
(21.2)

- S_{ct}^{T} — площадь тушения стволом, м²;

- P_{τ} , Φ_{τ} — соответственно периметр и фронт тушения пожара, м;

- P_{cr}^{r} , Φ_{cr}^{r} — соответственно часть периметра и фронта тушения стволом, м.

Следует помнить, что требуемое число стволов на ликвидацию горения в зданиях целесообразно определять не по общей площади пожара, а по отдельным местам горения. Если при расчете принимают общую площадь пожара, то полученное число стволов необходимо согласовать с тактическими условиями и окончательно принять по числу мест (позиций) на пожаре. Например, при горении в нескольких этажах или помещениях на одном этаже число стволов принимают по расчету, но не менее числа мест осуществления боевых действий, обусловленных обстановкой и тактическими обстоятельствами тушения пожара.

При пожарах в складских помещениях с хранением ценностей на стеллажах или в штабелях число стволов определяют в общем порядке и окончательно принимают не менее двух на проход.

Общее число водяных стволов, требуемых для тушения пожара и защиты, определяют по формуле:

$$N^{\text{oбiu}}_{\text{cr}} = N^{\text{T}}_{\text{cr}} + N^{\text{3}}_{\text{cr}}. \tag{21.3}$$

Число воздушно-пенных стволов и генераторов ГПС при поверхностном тушении пожара вычисляют по формуле:

$$N_{\text{CBII}} = S_{\text{T}}/S_{\text{CBII}}^{\text{T}},$$
 (21.4)
 $N_{\text{TIIC}} = S_{\text{T}}/S_{\text{TIIC}}^{\text{T}},$ (21.5)

$$N_{rnc} = S_{T}/S_{rnc}^{T}, \tag{21.5}$$

где $S_{\text{свп}}^{\text{т}}$ и $S_{\text{гвс}}^{\text{т}}$ — соответственно площадь тушения воздушно-пенным стволом

6. Определяем фактический расход огнетушащего средства на ликвидацию горения и для защиты объектов, которым угрожает опасность:

$$Q_{\Phi} = \sum q_{cri}$$

7. Рассчитываем необходимый запас огнетушащих средств и обеспеченность ими объекта, на котором возник пожар.

При наличии противопожарного водопровода обеспеченность объекта водой проверяют по секундному расходу ее на ликвидацию горения

и защиту путем сравнения с водоотдачей водопровода (табл. 21.1). Обеспеченность объекта считается удовлетворительной, если водоотдача водопровода превышает фактический расход воды для целей пожаротушения.

При проверке обеспеченности объекта водой может быть случай, когда водоотдача водопровода удовлетворяет фактический расход, но воспользоваться этим расходом невозможно из-за отсутствия достаточного числа пожарных гидрантов. В этом варианте необходимо считать, что объект обеспечен частично, следовательно, для полной обеспеченности объекта водой необходимы два условия: чтобы водоотдача водопровода превышала фактический расход воды ($Q_{\text{водопр}} > Q_{\phi}$) и число пожарных гидрантов соответствовало требуемому числу пожарных автомобилей ($N_{\text{п.г.}} \ge N_{\text{п.а}}$), которые необходимо установить на водоисточник.

Не является исключением вариант, когда водоотдача водопровода не превышает фактический расход, но на объекте имеются пожарные водоемы. Тогда поступают следующим образом: определяют остаток фактического расхода воды, который не обеспечивается водопроводом ($Q_{\text{ост}} = Q_{\phi} - Q_{\text{водопр}}$), вычисляют общий расход этого остатка $Q_{\text{вст}}$ и сравнивают его с максимально возможным расходом из выражения:

$$Q_{\scriptscriptstyle B} = 0.9 \cdot W_{\scriptscriptstyle B} / \tau_{\rm pacq}. \tag{21.6}$$

Если это количество превышает остаток, значит, объект водой обеспечен.

При наличии на объектах только пожарных водоемов обеспеченность определяют по общему расходу воды на ликвидацию горения и защиту с учетом нормативных запасов. Потребность объекта водой удовлетворяется, если количество ее в водоемах $V_{\text{вод}}$ будет превышать общий расход Vвобщ на ликвидацию горения и защиту не менее на 10 % (0,9 $V_{\text{вод}} \ge V_{\text{общ}}^{\text{в}}$). Это обусловлено тем, что некоторое количество воды в водоемах не используется из-за невозможности ее полного отбора по разным причинам.

Продолжительность работы при подаче воды из водоемов определяют по формуле:

$$au_{\text{раб}} = 0.9 \; V_{\text{вод}} / \sum N_{\text{приб i}} \; Q_{\text{приб i}},$$
 где $Q_{\text{приб i}} -$ расход воды из i-го прибора подачи, л/с.

Таблица 21.1

Напор в сети, м	Вид водопроводной	Водоотдача водопроводной сети, л/с, при диаметре трубы, мм								
папор в сети, м	сети	100	125	150	200	250	300	350		
1	2	3	4	5	6	7	8	9		
10	Тунциород	10	20	25	30	40	55	65		
10	Тупиковая	25	40	55	55 65 85 11	115	130			
20	V оди пород	14	25	30	45	55	80	90		
	Кольцевая	30	60	70	90	115	170	195		
30	То же	17	35	40	55	70	95	110		
30	10 же	40	70	80	110	145	205	235		
40	Тама	21	40	45	60	80	110	140		
	То же	45	85	95	130	185	235	280		

В случаях, когда на объекте огнетушащих веществ недостаточно, принимают меры к их увеличению: повышают водоотдачу водопровода

путем увеличения напора в сети, организуют перекачку или подвоз воды с удаленных водоисточников, при необходимости доставляют специальные средства тушения с резервных складов гарнизона и опорных пунктов тушения крупных пожаров. При разработке планов тушения пожаров по этим вопросам дают соответствующие рекомендации руководителю тушения пожара (РТП), начальнику штаба (НШ) и начальнику тыла (НТ);

8. Определяем требуемое количество пожарных автомобилей основного назначения для подачи воды с учетом использования насосов на полную тактическую возможность, которое в практике тушения является основным и обязательным требованием.

$$N_{_{\rm M}} = Q_{_{\Phi}}/Q_{_{\rm H}},\tag{21.8}$$

где $Q_{\rm H}$ — подача пожарного насоса при избранной схеме боевого развертывания, π/c .

В зависимости от схемы боевого развертывания подача насоса может быть различной. Так, при подаче от автомобиля двух стволов с диаметром насадков 19 мм и четырех — с насадком 13 мм подача насоса составляет примерно 30 л/с, при подаче шести стволов с насадком 13 мм QH=22 л/с, а четырех пеногераторов ГПС-600, QH=24 л/с и т. д. Следовательно, подачу пожарного насоса можно определить по формуле:

$$Q_{\rm H} = \sum N_{\rm приб \, i} \, Q_{\rm приб \, i},$$
 (21.9) где $Q_{\rm приб \, i} -$ расход воды из i-го прибора, л/с.

9. Определяем предельные расстояния по подаче огнетушащих средств от пожарных автомобилей, установленных на водоисточники. Предельные расстояния по подаче огнетушащих средств от пожарных машин, установленных на водоисточники, определяют по таблицам, графикам, или по формуле:

$$l_{\rm np}^{-} = [H_{\rm H} - (H_{\rm p} + Z_{\rm M} + Z_{\rm npi6})]20 / SQ^2,$$
 (21.10)

- l_{np} предельное расстояние по подаче огнетушащего средства, м; $H_{\rm H}$ напор на насосе, м; $H_{\rm p}$ напор у разветвления, м ($H_{\rm p}$ = = $H_{\rm приб}$ +
- $H_{\rm H}$ напор на насосе, м; $H_{\rm p}$ напор у разветвления, м ($H_{\rm p}$ = = $H_{\rm приб}$ 10);
 - Z_м высота подъема местности, м;
- $Z_{_{\rm приб}}^{}$ наибольшая высота подъема прибора подачи огнетушащего средства, м;
- $H_{\rm приб}$ напор у приборов подачи огнетушащего вещества (водяных стволов, СВП, ГПС), подключенных к разветвлению, м;
 - S сопротивление пожарного рукава наиболее нагруженной линии, м;
 - Q расход воды в наиболее нагруженной линии, л/с.

При подаче огнетушащего средства по линии из рукавов одинаковой длины на всем протяжении от пожарной машины до прибора подачи предельное расстояние определяют по формуле:

$$I_{np} = [H_{H} - (H_{nph6} + Z_{M} + Z_{nph6})]20 / SQ^{2}.$$
 (21.11)

Полученные предельные расстояния сравнивают с фактическими от водоисточников до объекта пожара и определяют возможность подачи воды без перекачки. Если расстояния превышают предельные, найденные расчетом, и нельзя изменить схему боевого развертывания для увеличения

этих пределов, организуют перекачку воды или доставку ее автоцистернами.

10. Определяем численность личного состава для ведения боевых действий на пожаре. Общую численность личного состава определяют путем суммирования числа людей, занятых на проведении различных видов боевых действий. При этом учитывают обстановку на пожаре, тактические условия его тушения, действия, связанные с проведением разведки пожара, боевого развертывания, спасания людей, эвакуации материальных ценностей, вскрытия конструкций и т.д. С учетом сказанного формула для определения численности личного состава будет иметь следующий вид:

$$N_{\text{личн.сост.}} = N_{\text{cr}}^{\text{T}} 3 + N_{\text{cr}}^{\text{3}} 2 + N_{\text{м}} + N_{\pi} + N_{\pi 6} + N_{\text{cB}},$$
 (7.12)

- $N_{\rm cr}^{\rm T}$ 3 количество людей, занятых на позициях стволов по ликвидации горения, включая ствольщиков (учитываются и звенья ГДЗС);
- $N_{\rm cr}^3 \kappa$ количество людей, занятых на позициях стволов по защите, включая подствольщиков;
- $N_{_{\rm M}}$ количество людей, занятых на контроле за работой насосно-рукавных систем (по числу автомобилей);
- $N_{_{\mathrm{J}}}$ количество страховщиков на выдвижных трехколенных лестницах (по числу лестниц);
- $N_{n\delta}$ количество людей, занятых на посту безопасности (по числу постов ГДЗС);
 - N_{cr} количество связных и т.д.
- 11. Определяем требуемое количество пожарных подразделений (отделений) основного назначения и номер вызова на пожар по гарнизонному расписанию. При определении требуемого количества подразделений исходят из фактического состава боевых расчетов гарнизона. В указанное число не входят водитель пожарного автомобиля и лица, отсутствующие на службе по различным причинам.

Из сказанного требуемое количество отделений основного назначения определяют по формулам:

$$N_{\text{ord}} = N_{\text{n.c.}}/N_{6,\text{p.}},$$
 (21.13)

- $N_{\text{л.с.}}$ требуемая численность личного состава для тушения пожара без привлечения других сил (рабочих, служащих, населения, воинских подразделений и др.);
- $N_{6,p.}$ численность боевого расчета отделения на основном пожарном автомобиле.

При подготовке к тактическим занятиям и учениям количество отделений определяют с учетом фактического наличия личного состава в боевых расчетах подразделений, привлекаемых на занятие (учение). По количеству отделений основного назначения, необходимых для тушения пожара, назначают номер вызова подразделений на пожар согласно гарнизонному расписанию.

12. Определяем необходимость привлечения пожарных подразделений специального назначения, вспомогательной и хозяйственной техники, служб города и объекта, сил и средств гражданской обороны, воинских

подразделений, рабочих объекта, населения и других сил. Необходимость привлечения перечисленных сил и средств определяют с учетом конкретной (или возможной) обстановки на пожаре и тактических возможностей пожарных подразделений по выполнению боевых действий. При разработке планов тушения пожаров и тактических замыслов учений следует учитывать вероятность привлечения других сил и средств, а также взаимодействие с ними подразделений пожарной охраны.

22. ПРИМЕРЫ РЕШЕНИЯ ПОЖАРНО-ТАКТИЧЕСКИХ ЗАДАЧ

Задача 22.1. Здание лесопильного цеха одноэтажное, размером в плане 60 x 80 м. Высота здания до карниза 4,5 м. Стены цеха выполнены из силикатного кирпича $\delta = 510$ мм. Полы деревянные. Перекрытие деревянное по деревянным формам. Кровля из кровельного железа.

В цехе установлено две лесопильные рамы РЛ-75-6 и одна 2 РД-76-1. Под лесопильными рамами имеется подвал для сбора опилок от работающих лесопильных рам.

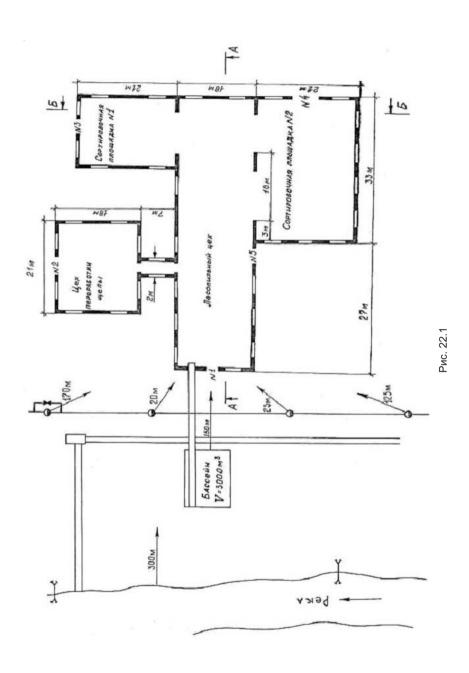
Вплотную к лесопильному цеху пристроены две сортировочные площадки и цех переработки щепы. Сортплощадка № 1 — одноэтажные здания. Стены кирпичные $\delta = 510$ мм. Несгораемая кровля из кровельного железа.

Сортплощадка № 2 и цех переработки щепы — одноэтажные здания. Стены кирпичные $\delta = 510$ мм, покрытия совмещаемые, железобетонные по железобетонным фермам, кровля рубероидная. Полы в помещении деревянные. Размеры сортплощадок и цеха переработки щепы указаны на схеме, высота их до карниза 4.5 м.

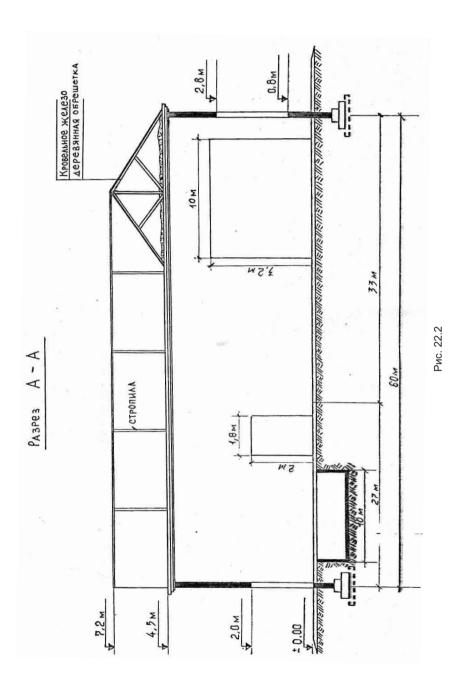
Противопожарные преграды между лесопильным цехом и сортплощадками и цехом переработки щепы отсутствуют, а сгораемые конструкции огнезащитным составом не обрабатывались.

Лесопильные цех оборудован транспортерами и бревнотасками. Пожарная нагрузка на момент пожара составляла $60\text{-}100~\mathrm{kr/m^2}$.

Внутреннее пожаротушение в лесопильном цехе обеспечивается от 20 внутренних пожарных кранов, установленных на водопроводе диаметром 65 мм, который обеспечивает одновременную работу двух стволов РС-50. Повышение напора во внутренней сети производится насосами-повысителями, установленными в насосной станции.


Наружное пожарное водоснабжение обеспечивается от пожарных гидрантов, расположенные на тупиковой водопроводной сети диаметром 150 мм, вода, в которую поступает из городской водопроводной сети. На вводе у $\Pi\Gamma$ -2 имеется водомер и обводная линия. Водоотдача водопроводной сети, при открытой задвижке на обводной линии, составляет 36 л/с.

Кроме того, для тушения пожара можно использовать воду из производственного бассейна емкостью 3000 м³ и реки. В летнее время пожарными кораблями вода может быть подана к лесопильному цеху по двум металлическим сухотрубам диаметром 76 мм. Расстояние от водоисточника указано на рис. 22.1. На объект предусмотрена высылка сил и средств по вызову №2 (табл. 22.2). Генеральный план, разрезы представлены на рис. 22.1, 22.2, 22.3.


Необходимо:

- изучить оперативно-тактическую характеристику объекта;
- оценить обстановку, сложившуюся на пожаре;

Норма ПБ

199

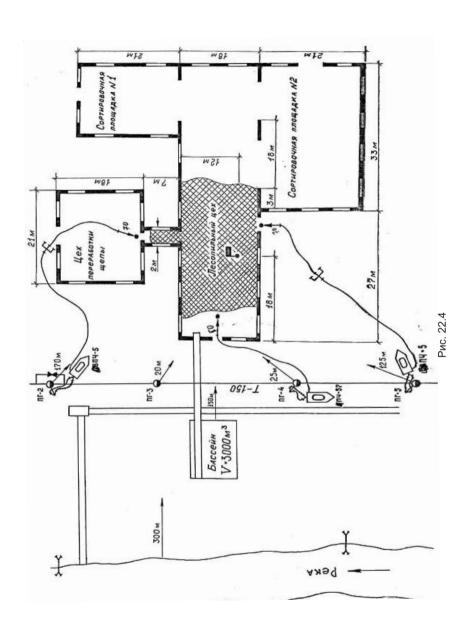
Рис. 22.3

- оценить действия РТП-2 (начальника караула ПЧ-5);
- определить необходимое количество сил и средств для тушения пожара;
- организовать тушение пожара и провести расстановку сил и средств;
 - заполнить таблицу по форме:

Таблица 22.1

Номер	Кол- во БУ	К	оличес	ство ств	олов	Суммарный расход огнетуш.	Кол-во рука- вов в ма- гистр. лини- ях, диаметр			Кол-во звеньев
		PC- 50	PC- 50	ГПС	Лафет	вещ-в, л/с	150	77	66	ГДЗС

Таблица 8.2


Расписание выездов пожарных подразделений на пожары

Номер	Наименование подразделений	Численность	Время следования пожарных
вызова	и марки автомобилей	боевого расчета	подразделения, мин
1	ПЧ-57		2
	АЦ-30 (130) 63	4	
	ПЧ-5		5
	АЦ-40 (130) 63А	4	
	АЦ-40 (375) Ц1	4	
2.	ПЧ-22		10
	АЦ-40 (130) 63Ц1	4	
	ПНС-110 (131) 131	2 2	
	AP-2 (131)133	2	
	ПЧ-53		11
	АЦ-40 (130) 63А	5	
	ПЧ-6		13
	АЦ-40 (130) 63А	4	
	АЦ-40 (130) 63А	4	
	ПЧ-4		16
	АЦ-40 (131) 137	4	
	ПК-317	4	17
	ПК «Стерегущий»	5	18
	ДСП	_	11
3.	ПЧ-3		
	ACO-5 (66)90	5	24
	АЦ-40 (130) 63А	4	24
	ПЧ-17		27
	АЦ-40 (131)147	4	
	АЦ-40 (131) 137	4	
	ПЧ-20		29
	АГДЗС	7	

Обстановка на пожаре на 9 ч 45 мин.

К месту пожара прибыл караул ПЧ-5 в составе 2 отделений на АЦ-40 (130) 63А и АЦ-40 (375) Ц1. При подъезде к месту пожара начальник караула увидел открытое горение на кровле лесопильного цеха и подтвердил вызов №2.

К этому времени была следующая обстановка: площадь пожара в лесопильном цехе составляла примерно 500 м^2 ; горение распространилось на кровлю цеха $S=100 \text{ м}^2$, подвальное помещение в галерею, сообщающую лесопильный цех с цехом переработки щепы; от ранее прибывшей АЦ-30 (130) 63 ПЧ-57, установленной на ПГ-4, работал ствол PC-50 по тушению пожара в лесопильном цехе. Скорость распространения горения 1,5 м/мин.

Оценив обстановку по внешним признакам, РТП-2 принял решение: АЦ -40 (130) 63А установить на ПГ-5 и подать ствол РС-70 на тушение пожара в лесопильном цехе; АЦ-40 (375) Ц1 установить на ПГ-2 и подать ствол РС-70 на тушение пожара в галерее со стороны цеха переработки щепы. Схема расстановки показана на рис. 22.4

Решение:

Оценка действий РТП-2 (Начальник караула ПЧ-5).

Положительно:

- подан ствол А на тушение пожара в галерею;
- подтвердил вызов №2

Недостатки:

- не провал разведки пожара не оценил обстановку;
- не использовал на полную мощность установленную на $\Pi\Gamma$ АЦ $\Pi\Pi\Psi$ -57:
 - не использовал ближайшие водоисточники;
 - не организовал работу звеньев ГДЗС и постов безопасности;
 - не определил решающее направление боевых действий;
 - не дал команду на открытие задвижки на обводной линии;
 - не организовал подачу стволов по кратчайшим путям;
- не передислоцировал поданный ПЧ-57 ствол PC-50 и не заменил его на ствол с большим расходом;
 - не передал информацию на ЦППС

Определение параметров развития и тушения пожара.

- 1. Определение расстояния, пройденного огнем на момент прибытия караула ПЧ-5:
 - в лесопильном цехе:

$$1_{1.1} = \frac{S_{\Pi}}{n \cdot a} = \frac{500}{2 \cdot 18} = 14 \text{ M}$$

- на чердаке лесопильного цеха:
- 2.Определение расстояния, пройденное огнем, на момент подачи стволов ПЧ-5:

$$l_{1.2} = \sqrt{\frac{S_{\Pi}}{\pi}} = \sqrt{\frac{100}{3,14}} = 6M$$

- в лесопильном цехе:

$$l_{2.1} = l_{1.1} + 0.5 \ V_{_{\! I\! I}} \cdot \tau_{6.p1} = 14 + 0.5 \cdot 3 \cdot 1.5 = 17 \ M$$

- в галерее:

$$l_{2.2} = l_{1.2} - 12 + \tau_{6,p1} \cdot V_{\pi} = 6,5 \text{ m};$$

- на чердаке лесопильного цеха:

$$l_{2.3} = l_{1.2} + V_{\pi} \tau_{6,p1} = 6 + 3 \cdot 1,5 = 10,5 \text{ m}.$$

3 Определяем площадь пожара на момент подачи стволов ПЧ-5:

- в лесопильном цехе:

$$S_{n,3,1} = I_{2,1} \cdot n \cdot a = 17 \cdot 2 \cdot 18 = 612 \text{ m}^2;$$

- на чердаке лесопильного цеха:

$$S_{_{\Pi\,3.2}}=\vec{l}_{_{2.3}}\cdot n\cdot l_{_{1.2}}+0,5\; l_{_{2.3}}{}^{2}\cdot \pi=10,5\cdot 2\cdot 6+0,5\cdot 10,52\cdot 3,14=300\;\text{m}^{2};$$

- в галерее:

$$S_{\pi 33} = I_{22} \cdot 2 = 6.5 \cdot 2 = 13 \text{ m}^2;$$

- на сортплощадке № 2:

$$S_{\text{m }3.4} = 0.5 \cdot \pi \cdot (l_{2.1} - 12)^2 = 0.5 \cdot 3.14 \cdot (17 - 12)^2 = 39 \text{ m}^2;$$

- общая площадь пожара:

$$S_{\pi 3.5} = S_{\pi 3.1} + S_{\pi 3.2} + S_{\pi 3.3} + S_{\pi 3.4} = 612 + 300 + 13 + 39 = 964 \text{ m}^2.$$

4 Определяем площадь тушения на момент подачи стволов Π Ч-5 (тушение осуществляем ручными стволами):

- в лесопильном цехе и сортплощадке № 2:

$$S_{T4.1} = (a + 5) \cdot h_T = (18 + 5) \cdot 5 = 115 \text{ m}^2;$$

- в галерее:

$$S_{T4,2} = 2 \cdot h_T = 2 \cdot 5 = 10 \text{ m}^2;$$

- на чердаке над лесопильным цехом (определяем площадь тушения с 2-х сторон):

$$S_{T43} = a \cdot n \cdot h_T = 18 \cdot 2 \cdot 5 = 180 \text{ m}^2.$$

5 Определяем требуемый расход воды на ликвидацию горения на момент подачи стволов караулом ПЧ-5.

- в лесопильном цехе и сортплощадке №2:

$$Q_{5.1} = S_{T4.1} \cdot I_1 = 115 \cdot 0,2 = 23 \text{ m/c};$$

- в галерее со стороны цеха переработки щепы:

$$Q_{5,2} = S_{T4,2} \cdot I_1 = 10 \cdot 0,2 = 2 \pi/c;$$

- на чердаке лесопильного цеха:

$$Q_{5.3} = \hat{S}_{7.4.3} \cdot I_2 = 180 \cdot 0.15 = 27 \text{ m/c};$$

- общий расход воды на ликвидацию горения:

$$Q_{5,4} = Q_{5,1} + Q_{5,2} + Q_{5,3} = 23 + 2 + 27 = 52 \text{ m/c};$$

 $Q_{\phi} = 21 \text{ п/c} < Q_{\text{тр.}} = Q_{5.4} = 52 \text{ л/c}$, т.к. на данный момент подано три ствола PC-70 с насадком 19 мм (ПЧ-5 — 2 PC-70; ПЧ-57 — 1 PC-70).

Для локализации пожара сил и средств недостаточно. Учитывая, что решение направление болевых действий принять со стороны цеха переработки щепы, необходимо подать ствол PC-70 в галерею передислоцировав отделение ПЧ-57, тогда Q=7 л/с > $Q_{\rm TD}=Q_{\rm 5.2}=2$ л/с, что позволит прекратить распространение горения по галерее.

Со стороны сортплощадок подадим 2 ствола A с d_h = 25 мм силами караула Π Ч-5, проложив для этого вторую магистральную линию от AЦ Π Ч-57, а для увеличения водоотдачи водопровода открываем вентиль обводной линии.

Определяем расстояние, на которое распространится горение на момент подачи стволов силами по вызову №2:

- в лесопильном цехе и сортплощадке №2:

$$l_{5.5.1} = l_{2.1} + 0.5 V_{\pi} \tau_{N2} = 17 + 0.5 \cdot 14 \cdot 1.5 = 27 M.$$

- на чердаке лесопильного цеха:

$$l_{5.5.2} = l_{2.3}^{T} + 0.5 V_{\pi} \tau_{N2} = 10.5 + 14 \cdot 0.5 \cdot 1.5 = 21 M.$$

- 6.Определяем площадь пожара на момент подачи стволов силами по вызову №2:
 - в лесопильном цехе:

$$S_{\pi 6.3} = (1_{5.5.1} + 18) \cdot a = (27 + 18) \cdot 18 = 810 \text{ m}^2;$$

- в сортплощадке № 2:

$$S_{\pi,62} = 3 \cdot 15 + 0.25 \cdot 3.14 \cdot 152 = 221 \text{ m}^2;$$

- на чердаке лесопильного цеха:

$$S_{n,6,3} = (1_{5,5,2} + 18) \cdot a = (21 + 18) \cdot 18 = 710 \text{ m}^2;$$

- общая площадь пожара:

 $S_{\pi \ 6.4} = S_{\pi \ 6.1} + S_{\pi \ 6.2} + \bar{S}_{\pi \ 6.3} = 810 + 221 + 710 = 174 \ M^2$ (без учета плошади пожара в галерее).

- 7. Определяем площадь тушения на момент подачи стволов силами по вызову № 2:
 - в сортплощадке № 2 и лесопильном цехе:

$$S_{T,7,1} = 15 \cdot 5 + 28 \cdot 5 = 60 + 140 = 200 \text{ m}^2;$$

- на чердаке лесопильного цеха (площадь тушения со стороны сортплощадок, т.к. с противоположной стороны горения достигло карниза здания):

$$S_{T72} = a \cdot hT = 18 \cdot 5 = 90 \text{ m}^2.$$

- 8.Определяем требуемый расход воды на ликвидацию горения и защиту к моменту подачи стволов силами по вызову №2:
 - в лесопильном цехе и сортплощадке № 2:

$$Q_{8.1} = S_{x.7.1} \cdot I_{1} = 200 \cdot 0,2 = 40 \text{ л/c};$$

- на чердаке лесопильного цеха:

$$Q_{82} = \hat{S}_{7,2} \cdot I_2 = 90 \cdot 0.15 = 13.5 \text{ m/c};$$

- общий расход воды на ликвидацию горения:

$$Q_{83} = Q_{81} + Q_{82} + Q_{652} = 40 + 13.5 + 7 = 60.5 \text{ m/c};$$

 $Q_{8.3}=Q_{8.1}+Q_{8.2}+Q_{q.5.2}=40+13,5+7=60,5$ л/с; $Q_{\text{гр.8.3}}=60,5$ л/с < $Q_{q}=64$ л/с (при условии подачи стволов звеньями ГДЗС).

9. Определяем требуемое количество стволов на ликвидацию горения:

- в лесопильном цехе и сортплощадке № 2:

$$N_{9.1} \frac{Q_{8.1}}{q_{25}} = \frac{40}{10} = 4 PC - 70$$
;

- на чердаке лесопильного цеха:

$$N_{9.2} = \frac{Q_{8.2}}{q_{19}} = \frac{13.5}{7} = 2 PC - 70$$
;

- для ликвидации горения в галерее работает ствол PC-70 c q=7 л/с.
- на защиту покрытий цеха переработки щепы и сортплощадки N2 из тактических соображений принимаем два ствола PC-50 по одному на каждое покрытие.
- 10. Определяем требуемое количество отделений для подачи стволов на ликвидацию горения:
 - в лесопильном цехе и сортплощадке №2:

$$N_{10.1} = \frac{N_{9.1}}{n_{\text{ст. от}}} = \frac{4}{1} = 4 \text{ отд}$$
;

- на чердаке лесопильного цеха:

$$N_{10.2} = \frac{N_{9.2}}{n_{\text{ст. от}}} = \frac{2}{2} = 1$$
 отд;

- в галерее:

$$N_{10.3} = 1$$
 отд.;

- для защиты покрытия потребуется 1 отделение (N10.4) (с учетом работы ствольщиков на покрытии):

$$N_{10.4} = 1$$
 отд.;

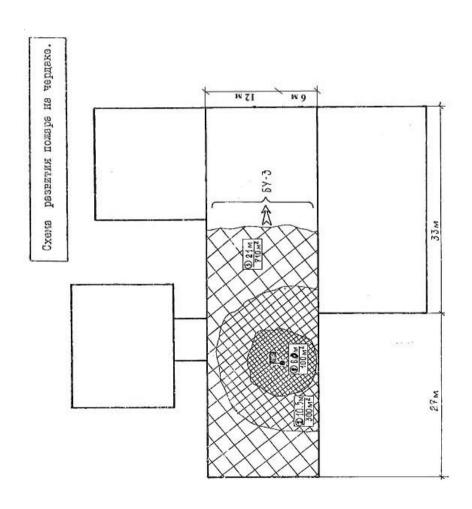
- всего отделений:

$$N_{10.5} = N_{10.1} + N_{10.2} + N_{10.3} + N_{10.4} = 4 + 1 + 1 + 1 = 7$$
 отд.

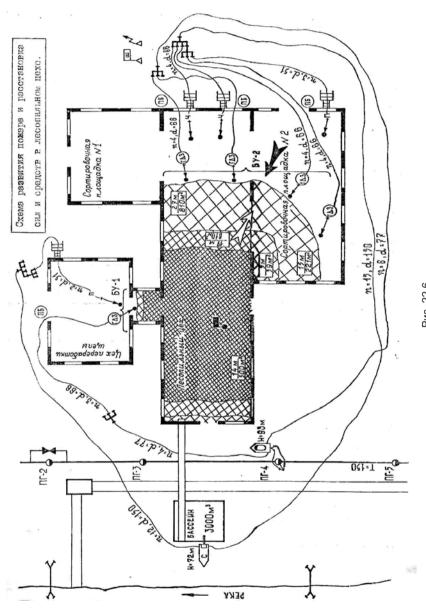
11. Организация тушения:

- на тушение пожара потребуются силы, и средства по вызову №2 и дополнительно необходимо вызвать АСО и АГДЗС;
- количество рукавов, используемых при боевом развертывании для подачи воды показана на схеме расстановки сил и средств;
 - организовать три болевых участка:
- БУ-1 со стороны галереи с задачей не допустить распространения горения в цех переработки щепы, На БУ-1 сосредоточить ствол РС-70 и ствол РС-50. Начальник БУ-1 начальник караула ПЧ -5.

БУ-2 со стороны сотрплощадок, с задачей не допустить дальнейшего распространения горения по лесопильному цеху и сортплощадке и ликвидировать горение в лесопильном цехе.

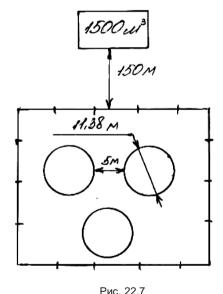

На БУ-1 сосредоточено 4 ствола PC-70 с $d_h=25$ мм. Начальник караула ПЧ-5, начальник БУ-1.

БУ-3: на чердаке со стороны сортплощадок с задачей не допустить распространение горения на покрытие сортплощадки M2 и в чердак сортплощадки M1 и ликвидировать горение лесопильного цеха. На БУ-3 сосредоточить два ствола PC-70 и ствол PC-50. Начальник БУ-3, начальник караула Π 4-6.


Прибывающие силы по вызову №2 вводят стволы в порядке очередности БУ.

Сводные данные используемых сил и средств на тушение пожара даны в табл. 22.3

Схемы развития пожара, расстановки сил и средств на момент локализации пожара представлены на рис. 22.5, 22.6.


Таблица 22.3

	Кол-	- Количество стволов						Количество рукавов Ко			Количество	
No E	во БУ						Q _{общ} , л/с	150	77	66	51	звеньев ГДЗС
	В	Л	19	25	PC- 50	ГПС		150	' '			1,400
2	3	_	3	4	2	_	68	27	10	27	5	5

Задача 22.2. Горит резервуар (PBC-700), наполненный техническим спиртом. Диаметр резервуара 11,38 м, высота 9,7 м. Уровень заполнения спиртом 4 м. Расстояние до двух соседних (аналогичных) резервуаров, расположенных в одном обваловании, 5 м. Пожарный водоем емкостью 1500 м³ расположен на расстоянии 150 м от обвалования.

В гарнизоне пожарной охраны имеются автомобили АВ-40(375)Ц-1 и АЦ-40(130)63А. На тушение используется пенообразователь ПО-1С.

Необходимо определить требуемое количество сил и средств для тушения, начертить схему их расстановки.

. ..

Решение:

1. Определяем количество ручных стволов на охлаждение горящего резервуара:

$$N_{ct}^{r} = \frac{p \cdot D \cdot j_{oxt}^{r}}{q} = \frac{3.14 \cdot 11.38 \cdot 0.5}{7} = 2.6 \text{ m}$$

(принимаем 3 ствола РС-70),

где D — диаметр резервуара, м;

 $j^{\Gamma}_{\text{охл}}$ — требуемая интенсивность подачи воды на охлаждение горящего резервуара, л/(с·м);

 ${
m q_{cr}}$ — расход воды из ручного пожарного ствола РС-70 с диаметром насадка 19 мм, ${
m n/c}.$

2. Определяем количество ручных стволов на охлаждение соседнего резервуара:

$$N_{\rm ct} = \frac{0.5 \cdot \pi \cdot D \cdot j^{\rm c}{}_{\rm oxt}}{q_{\rm ct}} = \frac{0.5 \cdot 3.14 \cdot 11.38 \cdot 0.5}{7} = 1.3 \ \text{meT}.$$

(принимаем 2 ствола РС-70 на каждый резервуар),

где j^c_{oxt} — требуемая интенсивность подачи воды на охлаждение соседнего резервуара, $\pi/(c \cdot m)$.

Так как необходимо охладить два соседних резервуара, принимаем 4 ствола PC-70 с диаметром насадка 19 мм.

Определяем требуемое количество отделений для подачи стволов на охлаждение резервуаров:

$$N^{\text{охл}}_{\text{отд}} = \frac{\sum\limits_{i}^{n} N^{\text{охл}}_{\text{ст}}}{n_{\text{ст.отд}}} = \frac{3+4}{2} = 3,5$$
отд.

(принимаем 4 отделения),

где $n_{\mbox{\tiny cr. отд.}}$ — количество ручных пожарных стволов, подающихся одним отделением.

4. Определяем количество воды, необходимое для разбавления спирта до 70% концентрации:

$$\frac{\text{Wc}}{\text{Wc+W}_{\text{B}}} = \frac{\text{hc}}{\text{hc+h}_{\text{B}}} = 0.7 \; ;$$

высота слоя воды для разбавления спирта будет равна:

 $h_{_{\rm B}}=0,43\cdot h_{_{\rm C}}=0,43\cdot 4=1,72$ м, тогда объем воды, необходимый для разбавления:

$$W_{_{B}} = S_{_{p}} h_{_{B}} = \frac{\pi \cdot D^{2} \cdot h_{_{B}}}{4} = \frac{3,14 \cdot 11,382 \cdot 1,72}{4} = 174,8 \text{ M}^{3},$$

где

- W_c объем спирта м³;
- $W_{\scriptscriptstyle R}$ объем воды, необходимой для разбавления, м³;
- h_c высота спирта в резервуаре, м;
- S_p площадь сечения резервуара, M^2 .
- 5. Для разбавления спирта принимаем 4 лафетных ствола ПЛС-20П

с диаметром насадка 28 мм.

6. Определяем время разбавления спирта лафетными стволами:

$$\tau_{_{p}} = \frac{W^{_{p}}_{_{B}}}{N^{_{c_{T}}} \cdot q^{_{_{c_{T}}}} \cdot 3600} = \frac{174800}{4 \cdot 20 \cdot 3600} = 0,6 \, \text{y} \; ,$$

где q_{cr} — расход воды из лафетного ствола (принимаем 20 л/с).

7. Определяем количество отделений для подачи лафетных стволов на разбавление спирта:

$$N^{p}_{\text{отд}} = \frac{N^{p}_{cT}}{n_{cT}^{\text{-отд}}} = \frac{4}{1} = 4 \text{ отд.},$$

где $N_{\rm cr}^{\rm p}$ — количество лафетных стволов, подаваемых для разбавления спирта, шт.

8. Определяем необходимое количество ГПС-600 на тушение:

$$N_{rrc} = \frac{p \cdot D^2 \cdot j_{rp}}{4 \cdot a^{p-p}_{rrc}} = \frac{3.14 \cdot 11.382 \cdot 0.3}{4 \cdot 6} = 5.1 \,\text{m} \text{ J}.$$

(принимаем 6 стволов ГПС-600),

 ${\rm j_{rp}}$ — требуемая интенсивность подачи раствора пенообразователя в воде, $\pi/({\rm c\cdot M});$

- q^{p-p}_{rmc} расход раствора пенообразователя в воде из ствола ГПС-600, л/с.
- 9. Определяем требуемое количество телескопических подъемниковпеносливов для подачи стволов ГПС-600:

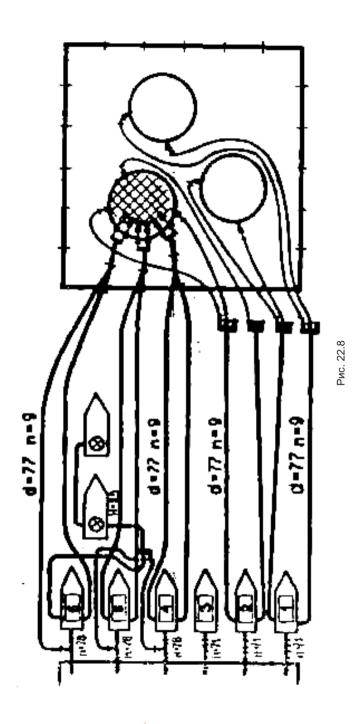
$$N_{nn} = \frac{N_{\Gamma\Pi C}}{n_{\Gamma\Pi C}} = \frac{6}{2} = 3 \,\text{mm},$$

где $n_{\mbox{\tiny FIRC}}$ — количество стволов ГПС-600, подаваемых пеномачтой или при помощи автолестниц АЛ.

$$N_{AJI} = \frac{N_{\Gamma IIC}}{n_{\Gamma IIC}} = \frac{6}{4} = 2 \text{ AJI}.$$

10. Определяем требуемое количество отделений для подачи стволов ГПС-600 на ликвидацию горения:

$$N_{\text{отд}}^{\text{т}} = \frac{N_{\text{пп}}}{n_{\text{отд пм}}} = \frac{3}{1} = 3 \text{ отд}$$


где $n_{\text{отд пм}}$ — количество пеномачт, устанавливаемых одним отделением, шт.

11. Определяем требуемое количество пенообразователя ПО-1С для ликвидации горения:

$$W_{no} = q^{no}_{rnc} \cdot N_{rnc} \cdot \tau \cdot k = 0,72 \cdot 6 \cdot 10 \cdot 60 \cdot 3 = 7776 \text{ A},$$

- τ нормативное время тушения, мин;
- q^{по}_{гпс} расход пенообразователя из ствола ГПС-600 при 12% концентрации, л/с;

- k коэффициент запаса.
- 12. Определяем требуемое количество автомобилей пенного тушения для доставки пенообразователя:

$$N_{AB} = \frac{W_{\Pi O}}{W_{A\Pi T}} = \frac{7776}{4000} = 1,94$$
 wit.

(принимаем два пожарных автомобиля),

где $W_{A\Pi T}$ — емкость цистерны автомобиля AB-40(374) (без учета пенообразователя в бачке).

13. Определяем общее количество воды для охлаждения, разбавления и пенообразования:

гле:

- τ_{oxn} время охлаждения резервуаров, ч;
- $q_{_{TRC}}^{_{B}}$ расход воды из ствола ГПС-600, л/с.

Воды для охлаждения, разбавления и тушения достаточно, т.к.

$$W_{p}^{TP} = 1290.2 \text{ M}^3 < W_{p}^{\Phi} = 1500 \text{ M}^3.$$

14. Определяем общее количество отделений:

$$N_{\text{общ}} = N_{\text{отд.}}^{\text{охл}} + N_{\text{отд.}}^{\text{т}} + N_{\text{апт}} = 4 + 3 + 2 = 9 \text{ отд.}$$

Расстановка сил и средств представлена на рис. 22.8.

Примечание. Отделения автоцистерн 3, 4, 5, 6 сначала подают лафетные стволы на разбавление спирта, по окончанию разбавления отделения 4,5,6 подают раствор пенообразователя в воде. Отделения 1, 2 охлаждают резервуары.

Задача 22.3. Пожар возник в резервуаре с нефтью емкостью $10000 \, \mathrm{M}^3$. Расстояние до соседнего резервуара соответствует нормам. Диаметр каждого резервуара 34,2 м, а высота 11,92 м. На расстоянии 150 м от горящего резервуара протекает река. В местном гарнизоне пожарной охраны находятся в боевом расчете: $AB-40(375H) \, \text{Ц}50A - 2 \, \text{шт.}$, $A \, \text{Ц}-40(130)63 \, \text{Б} - 20 \, \text{шт.}$

Определить необходимое количество сил и средств для тушения пожара и оптимальную схему их расстановки.

Решение

1. Определяем необходимое количество лафетных стволов с $d_{\scriptscriptstyle H} = 28$ мм на охлаждение горящего резервуара:

$$N^{r}_{oxt} = \frac{P_{r}J_{\tau p}^{r}}{q_{or}} = \frac{3.14 \cdot 34.2 \cdot 0.8}{20} = 4.3 \text{ m} \text{ }.$$

2. Определяем необходимое количество ручных стволов с $d_{_{\rm H}} = 25$ мм, предназначенных для охлаждения соседнего резервуара:

$$N^{c}_{ox\pi} = \frac{P_{c}J^{c}_{\tau p}}{2q_{-}} = \frac{3,14.34,2.0,3}{2.10} = 2 \text{ IIIT},$$

гле:

- P_г, P_с — периметр резервуара, м;

- $J_{_{Tp}}^{_{r}}$, $J_{_{Tp}}^{_{c}}$ требуемая интенсивность подачи воды для охлаждения горящего и соседнего резервуаров, л/(с·м²);
 - q_{ст} расход воды из одного пожарного ствола.
- 3. Определяем требуемое количество отделений для охлаждения резервуаров:

$$N^{\text{OXT}}_{\text{ot}} = \frac{N^{\text{G}}_{\text{OXT}}}{n_{\text{crt}}} + \frac{N^{\text{G}}_{\text{OXT}}}{n_{\text{crt}}} = \frac{5}{1} + \frac{2}{2} = 6$$
 OTA,

где n_{cr} — количество стволов, подающихся одним отделением. 4. Определяем требуемое количество ГПС-600 на ликвидацию горения:

$$N = \frac{S_n J_{np}}{q_{n-n}} = \frac{3,14 \cdot 34,2^2 \cdot 0,05}{4 \cdot 6} = 8 \text{ mm},$$

гле:

- S_n площадь поверхности жидкости в резервуаре, M^2 ; J_{rp} требуемая интенсивность подачи водного раствора пенообразователя на ликвидацию горения, $\pi/(c \cdot m^2)$;
 - q_{n-p} расход водного раствора пенообразователя из ствола ГПС-600, π/c .
- 5. Определяем требуемое количество пеномачт для подачи стволов ГПС-600:

$$N_{_{\Pi}} = \frac{N}{n_{_{\Pi\Pi C}}} = \frac{8}{4} = 2 \text{IIIT},$$

где n_{rnc} — количество ГПС-600, устанавливаемых на одной пеномачте.

6. Определяем требуемое количество отделений для установки пеномачт:

$$N_{\text{отд}} = \frac{N_{\pi}}{n_{\pi,\text{отд}}} = \frac{2}{1} = 2$$
отд

где $n_{\text{п.отд}}$ — количество пеномачт, которое может установить одно отделение.

7. Определяем необходимое количество 6% пенообразователя:

$$W_{\text{по}} = q_{\text{по}} N \tau_{\text{н}} K = 0,36 \cdot 8 \cdot 5 \cdot 60 \cdot 3 = 7776 \text{ л},$$

- $\tau_{_{\rm H}}$ нормативное время тушения, мин;
- ${\bf q}_{\rm no}$ расход пенообразователя из ствола ГПС-600 при 6% концентрации раствора, л/с;
 - к коэффициет запаса.
- 8. Определяем требуемое количество автомобилей пенного тушения для доставки пенообразователя:

$$N_{aB} = \frac{W_{no}}{W_{anr}} = \frac{7776}{4000} = 2$$
автомобиля,

где $W_{A\Pi T}$ — емкость цистерны для пенообразователя, л. (емкости бачков для пенообразователя, имеющихся на пожарных автомобилях, не учитываются).

9. Определяем общее количество отделений для тушения пожара в резервуарном парке:

Примечание. Интенсивность подачи воды на охлаждение, раствора пенообразователя на тушение, время тушения и коэффициент запаса определены по СНиП 2.11.03-93 "Склады нефти и нефтепродуктов".

Задача 22.4. Произошел длительный пожар в жилом доме. На его тушение в течение двух часов подавалась вода из двух стволов PC-50 с диаметром насадки 13 мм и расходом воды 3,5 л/с у каждого. Расстояние от места пожара до водоисточника, из которого имеется возможность забора воды — 2,5км. Заправка пожарных автомобилей производится пожарной мотопомпой МП-600. Средняя скорость движения пожарного автомобиля $35 \, \text{км/ч}$.

Требуется определить необходимое количество АЦ-40 (130)-63A для организации подвоза воды, графически показать схему их работы.

Решение:

1. Определяем время следования пожарной автоцистерны к водоисточнику и обратно:

$$\tau_{\rm c} = \frac{2L}{V_{\rm AH}} = \frac{2 \cdot 2, 5 \cdot 60}{35} = 8,6 \,\text{мин},$$

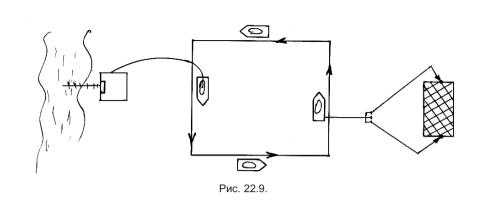
гле:

- L расстояние от водоисточника до места пожара, км;
- $-V_{AII}$ средняя скорость движения пожарной автоцистерны, км/ч (с учетом установки автомобиля на заправку, подсоединения стволов на месте пожара).
 - 2. Определяем время заправки пожарной автоцистерны:

$$\tau_3 = \frac{W_{II}}{q_s} = \frac{2100}{600} = 3.5 \,\text{Muh},$$

гле:

- $-W_{_{\rm II}}$ емкость пожарной автоцистерны, л;
- q₃ подача насоса мотопомпы, л/мин.
- 3. Определяем время работы пожарных ручных стволов от емкости пожарной автоцистерны (без учета потерь воды в рукавах):


$$\tau_{\rm p} = \frac{W_{\rm u}}{q_{\rm cr}} = \frac{2100}{3.5 \cdot 2 \cdot 60} = 5 \,\text{мин} ,$$

где q_{cr} — расход из ручного пожарного ствола диаметром насадка 13 мм, л/с. 4. Определяем количество пожарных автоцистерн для тушения:

$$N_{AII} = \frac{\tau_c + \tau_3}{\tau_n} + 1 = \frac{8.6 + 3.5}{5} + 1 = 3.6 \approx 4_{AII}$$

Схема работы пожарных автомобилей показана на рис. 22.9.

23. НОРМИРОВАНИЕ БОЕВЫХ ДЕЙСТВИЙ

Научно обоснованные нормативы позволяют обеспечить объективно равные возможности выполнения боевых задач индивидуально, в составе отделений и караулов, а также оказывает существенное влияние на состояние боевой готовности пожарных подразделений и качество ведение боевых действий.

Нормативы следует устанавливать в строгом соответствии с условиями выполнения упражнения с учетом необходимых затрат, а также влияния различных факторов.

В нормативах должен быть обеспечен заданный уровень точности, учтены условия выполнения нормируемых упражнений. Кроме того, они должны быть удобны в использовании.

Первое требование удовлетворяется при установлении допустимых погрешностей нормативов, исходя из заданной точности и объективно неизбежной разновидности нормативов, и достигается путем применения математически обоснованных методов сбора исходных данных и установления нормативных зависимостей.

Второе требование означает необходимость исчерпывающего описания вариантов условий выполнения упражнений, на которые составляются нормативы. Каждому варианту должны соответствовать значения нормативов или поправочных коэффициентов, учитывающих влияние различных факторов.

При планировании боевых действий расчет показателей боевых действий личного состава и подразделений и их оптимизация, производится по установлению расчетных величин затрат времени на каждую операцию в отдельности или на действие в целом. Правильность проставления временных характеристик имеет первостепенное значение.

Если расчетные величины затрат времени на выполнение норматива будут занижены, то есть взяты меньшими, чем необходимо для его выполнения, то это вызовет поспешность в исполнении того или иного действия и к срыву всего норматива в целом.

Завышение расчетных величин, наоборот, может привести к напрасной потере времени и другим просчетам при ведении боевых действий на тушение пожара.

Для того, чтобы получить оценки времени, наиболее соответствующие реальности, существует две возможности.

Для работ и для других операций, по которым накоплен достаточно большой опыт, оценки могут браться из накопленного опыта, то есть выведенных из реальных величин затрат времени на выполнение работ в ходе боевой подготовки или в ходе боевых действий на пожаре. Правомерность однозначного выбора таких временных показателей основывается

на теории вероятности, и будет представлять собой статистическое среднее значение определенного количества оценок продолжительности работы. Иными словами, при большом числе независимых оценок продолжительности работы среднее арифметическое полученных значений отдельных операций иди всей работы в целом можно считать оценкой математического ожидания величины норматива, то есть при 'большом числе опытов среднее статистическое значение данной величины можно считать мало отличающимся от реального.

Отсюда вытекает важный вывод: необходимо накапливать опытные данные по всем видам боевых действий на пожаре или отдельным операциям и сводить их в справочные нормативные таблицы и каталоги, что позволит достаточно легко проставить временные показатели для оценки деятельности личного состава и подразделений. Однако в этом случае специалисты всегда будут иметь дело со случайными величинами, которые не будут носить достоверный характер для всего личного состава страны, региона, области хотя бы потому, что наблюдения являются неравноточными, у личного состава разные уровни физической подготовленности, работа выполнялась при разных условиях и множестве усложняющих факторов.

Есть и другая возможность получения указанных выше характеристик. Она основана на математических методах обработки расчетных величин затрат времени на операции с пожарно-техническим вооружением и пожарной техникой.

Следует иметь в виду, что, какими бы подробными и обстоятельными ни были исходные данные разрабатываемых нормативов, всегда остается вероятность ошибки в полученных результатах и выводах. Математика предоставляет возможность построения практически неограниченного числа моделей, с помощью которых можно достаточно точно описывать действительность. Специалистам, занимающимся исследованием закономерностей выполнения работы с пожарной техникой и пожарнотехническим вооружением, эти модели открывают новые возможности при постановке и решении задач повышения уровня профессиональной подготовленности личного состава. Достоинства математических методов очевидны, и без их использования сегодня трудно представить обработку статистических данных в любой сфере деятельности. Из множества математических моделей, которые формируются на основе статистических данных, для нас представляют наибольший интерес модели, получаемые на основе многомерной обработки данных.

Целью многократных измерений времени выполнения работы заданного упражнения или составляющего его элемента является, в конечном итоге, оценка истинного значения измеряемой величины.

В качестве истинного значения, измеряемой величины q принимается средняя арифметическая величина.

23.1 Последовательность нормирования боевых действий

- 1. Подготовка к проведению эксперимента:
- выбор нормируемого упражнения;
- описание действий исполнителей;
- определение условий выполнения упражнения;
- определение факторов, оказывающих влияние на время выполнения упражнения;
 - подбор исполнителей для выполнения нормируемого упражнения;
 - 2. Хронометраж освоения элементов нормируемого упражнения:
 - расчленение нормируемого упражнения на его составляющие;
- определение моментов начала и окончания работ элементов или отдельных операций нормируемого упражнения;
 - определение времени проведения наблюдений;
 - определение коэффициента интенсивности освоения;
 - исключение результатов, содержащих грубые погрешности;
 - определение требуемого количества измерений;
 - 3. Определение истинного значения измеряемой величины:
 - определение среднего значения измеряемой величины;
 - определение доверительного интервала измеряемой величины;
- вычисления (если не известны) коэффициентов, учитывающих факторы, влияющие на время выполнения измеряемой величины;
- 4. Определение времени выполнения упражнений (боевых действий) в целом:
- закрепление элементов и операций выполнения упражнения за пожарными;
- определение времени выполнения каждого элемента, операции, закрепленных за пожарными;
- определение общего времени выполнения закрепленных за каждым пожарным элементов и операций исследуемого упражнения (по возможности время на выполнение, затраченное каждым пожарным должно быть одинаково):
- определяется нормативное время выполнения упражнения в целом по максимальному времени, затраченному одним из пожарных;
- 5. Опробование нормативов в отделениях, караулах пожарных частей, учебных заведениях пожарно-технического профиля, их корректировка, согласование и утверждение.

23.2. Подготовка к проведению эксперимента.

На данном этапе выбирается упражнение, для которого предстоит составить нормативные требования, определяется структура его выполнения, производится подробное описание действий с момента поданной

команды до окончания упражнения, условий выполнения и усложняющих факторов, проверяется соответствие пожарно-технического вооружения (спасательного оборудования) техническим требованиям. (Недостатки должны быть устранены до начала хронометрирования).

Для удобства описания действий для каждого исполнителя упражнение рекомендуется расчленить на элементы, по каждому из которых предстоит определить оценку продолжительности работы. Это рекомендуется сделать по форме, приведенной в табл. 23.5. Очень важно определить количество повторений операций (элементов) и упражнения в целом.

Следующим, очень важным обстоятельством данного этапа, является, получение объективной информации о физической подготовленности личного состава, привлеченного для участия в эксперименте, и тем самым исключение зависимости разрабатываемого норматива от случайных величин в этой области.

Подбор исполнителей осуществляется по уровню общей выносливости и функциональной подготовленности (общей физической подготовленности). В этих целях следует применять степ-тест, основанный на методе функциональной пробы PWC_{170} с дозированной физической разгрузкой.

Пожарный в повседневной одежде при температуре окружающей среды 18-22°С выполняет две последовательные дозированные физические нагрузки при восхождении на ступеньки в течение 4 минут. Первая нагрузка заключается в подъеме на ступеньку высотой 25 см и спуске с нее со скоростью 20 восхождений в одну минуту под метроном, вторая (она проводится через две минуты после первой) — в подъеме на ступеньку высотой 50 см и спуске с нее при тех же условиях. Пульс прощупывается пальцем на лучевой артерии кисти руки или (при наличии аппаратуры) дистанционно. Частота сердечных сокращений (ЧСС) измеряется в начале 4-й минуты каждой из нагрузок в течение 10 секунд.

После этого для каждого пожарного, участвующего в эксперименте, рассчитывается индекс общей физической подготовленности по формуле:

$$PWC_{170} = 5 + \frac{850 - 30f_1}{6(f_2 - f_1)},$$
(23.1)

где f_1, f_2 — частота сердечных сокращений после первой и второй физических нагрузок за 10 с.

Для удобства выпишем показатели полученных по формуле 23.1 в табл. 23.1, произведем расчеты по формуле и полученные значения PWC_{170} занесем в седьмую графу таблицы для каждого участника эксперимента.

Получив, таким образом, индекс PWC_{170} и сопоставив его значение с данными табл. 23.2, можно определить уровень общей физической подготовленности каждого исполнителя с учетом его возраста.

Таблица 23.1 Результаты расчета интегрального показателя общей физической подготовленности (PWC, , ,)

№ пож	f ₁	f ₂	6 (f ₂ -f ₁)	30 f ₁	$\frac{850 - 30 f_1}{6 f_2 - f_1}$	PWC ₁₇₀	Уровень физической подготовленности
1	2	3	4	5	6	7	8
1	15	21	36	450	11,1	16,1	1
n	15	18	18	540	17,2	22,2	4

Таблица 23.2. Показатели, характеризующие уровень физической подготовленности пожарных

		• • •		
Pospost not		Уровень физичес	кой подготовленности	
Возраст, лет	Низкая (1)	Средняя (2)	Высокая (3)	Очень высокая (4)
До 29	16,2	16,2-19,3	19,3-20,9	20,9
От 29 до 39	14,9	14,9-17,9	17,9-19,1	19,1
От 39 до 49	13,4	13,5-16,4	16,4-17,9	17,9
От 50 до 59	12,0	12-14,9	14,9-16,4	16,4

Пусть, например, у первого испытуемого индекс PWC_{170} равен 16,1, а у n-го испытуемого — 22.2. Сопоставление их с соответствующими показателями таблицы для возрастной группы до 29 лет показывает, что в первом случае уровень физической подготовленности будет очень низким, то есть 1, во втором (для n) — очень высоким, то есть 4. Полученные уровни проставим в графу 8 таблицы 23.1.

Для участия в экспериментах допускаются пожарные, имеющие среднюю и высокую физическую подготовленность.

23.3 Хронометраж освоения элементов боевых действий

Каждое упражнение (норматив) включает в себя ряд последовательных операций. Эти операции можно назвать составляющими элементами упражнения. Как было отмечено ранее, упражнение должно быть расчленено на элементы, для которого руководитель эксперимента (наблюдатель) определяет моменты начала и конца выполнения работы: точки устанавливаются визуально или по звуку так, чтобы наблюдателем были охвачены все действия исполнителя, и чтобы не было перерывов между замеряемыми элементами. Если замеряют все элементы в комплексе, подряд, то ограничиваются установлением для каждого из них конечных фиксажных точек, поскольку они уже являются начальными для последующих элементов. Например, в элементе боевого развертывания раскатать пожарный напорный рукав начальной фиксажной точкой будет прикосновение руки пожарного к напорному рукаву, конечной фиксажной точкой — рукав раскатан по всей длине, дальняя соединительная головка коснулась земли. Окончание этого элемента будет начальной точкой для следующего элемента упражнения — "соединить рукава между собой".

Проведение наблюдений рекомендуется проводить через 1-1,5 часа после заступления на дежурство или приема пищи. Замеры должны проводиться в любое время суток. Это дает возможность получить точность значений ожидаемого времени выполнения упражнения как в период высокой, так и в период пониженной производительности.

Проведение хронометража сводится к регистрации результатов в наблюдательном листе хронометражной карты затрат времени на выполнение упражнений или элементов (операций), его составляющих, по установленным фиксажным точкам. Наблюдатель должен сделать отметки о всех случаях искажения замеров вследствие возникающих неполадок или ошибок самого наблюдателя.

Хронометраж выполняется непрерывным или выборочным способом. Непрерывный способ предполагает изучение всех элементов (операций), составляющих упражнение, следующих один за другим. В этом случае фиксируется текущее время окончания каждого элемента (операции) и время выполнения упражнения в целом. Выборочный способ применяется для замеров только отдельных элементов (операций) длительностью не более 10 с, а также при повторном наблюдении вместо забракованных наблюдений.

Принципиальной теоретической основой при освоении упражнения является выработка умения правильно и быстро осуществлять двигательные действия в структуре выполняемого упражнения или составляющего его элемента.

В начальный момент наблюдается повышение затрат времени, связанное с процессом формирования и совершенствования навыков, для каждого из участников эксперимента характерна своя интенсивность снижения затрат времени выполняемой работы, которую можно выразить через коэффициент интенсивности освоения (K_{μ}):

$$K_{_{\text{II}}} = \frac{X_{_{1}} - X_{_{2+10}}}{X_{_{1+10}}} < 0, 1, \tag{23.2}$$

где $X_1,\ X_{1+10}$ — затраты времени на выполнение элемента упражнения, порядковые номера, которые различаются на 10 единиц.

То есть, как только $K_{_{\!\scriptscriptstyle H}} < 0,1,$ с этого момента можно начинать учитывать количество наблюдений.

Следует отметить, что длительность фазы освоения может значительно сократиться за счет обучения пожарных под руководством инструктора-наставника или разделения упражнения на элементы (операции). Коллективное освоение новых упражнений пожарными в составе отделений имеет преимущество перед индивидуальным освоением.

Например, для одного из исполнителей многократность выполнения элемента составляет 20 раз, из которых значение первой величины времени выполнения составляет 7,9 с, второй - 7,4 с, третьей - 7,2 с, десятой - 6,2с, одиннадцатой - 6,4с. Произведя расчеты по формуле 23.2, получим следующие коэффициенты интенсивности:

$$K_{H1} = 0.21 > 0.1;$$
 $K_{H2} = 0.62 > 0.1$ $K_{H3} = 0.13 > 0.1;$ $K_{H4} = 0.031 < 0.1$

Из условия $K_{_{\text{и}1}} \leq 0,1,$ отсчет результатов для данного исполнителя будет начинаться с $X_{_{i}} = 6,4$ с.

Для удобства показатели интенсивности для всех исполнителей рекомендуется свести в табл. 23.3.

В ходе статистической обработки многократных наблюдений иногда выясняется, что некоторые результаты значительно отличаются от ожидаемого, то есть результат содержит грубую погрешность и его необходимо исключить из дальнейшей обработки. Доля таких результатов может достигать 10-15 % от общего числа измерений.

Таблица 23.3 Показатели зависимости освоения элементов упражнения

№ замеров	Для по	ервого испол	пнения	Для в	торого испол	нения	И т.д.
т№ замеров	Xi	X _{i+10}	Kμ	Xi	X _{i+10}	K _ν	
1	7,9	6,2	0,21				
2	7,4	6,2	0,62				
3	7,2	6,2	0,13				
_							
-							
_							
10	6,2	6,2	0				
11	6,4	6,2	0,031				
_							
_							
-							
n							

Вопрос об их исключении невозможно однозначно решить в общем, виде, если это не является явной ошибкой наблюдателя. Наиболее распространенным методом исключения результатов, содержащих грубые погрешности, является расчет величины t_s:

$$t_{p} = \frac{\left|Xi^{*} - \overline{Xi}\right|}{S}, \tag{23.3}$$

гле:

- X* сомнительный результат;
- і средняя величина измерений $X_1,\ X_2,..,\ X_n,$ рассчитывается без рассматриваемого сомнительного результата;
- S оценка среднестатистической погрешности (среднеквадратическое отклонение).

Критерий t_p служит для проверки больших отклонений от среднего, и сравнивается с коэффициентом Стьюдента $t_{\rm cr}$, соответствующим доверительной вероятности $P_n=0.95$ и определяемым по таблице 23.4

Для расчета значения t_p необходимо знать значения и S. По данным измерений $X_1,\ X_2,...,\ X_n$ средняя арифметическая величина

$$\overline{X_i} = \frac{\sum\limits_{i=1}^{n} X_i}{n} , \qquad (23.4)$$

где n — число измерений, X_i .

Таблица 23.4

Значени	я коэфф	рициент	ов Сты	одента	(t _{et}) при	$P_{_{\rm J}} = 0$,95	
Число измерений, п	5	7	10	12	16	20	40	Более
•								40
t_{cr}	3,0	2,6	2,4	2,3	2,2	2,1	2,0	1,96

Вычисляем оценку среднеквадратичного отклонения по формуле:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\overline{X}_i - X_i)^2} . \tag{23.5}$$

Зная значение S, вместо которой, подставляя ее оценку в формулу (23.3), получим значение $t_{\rm p}$.

Если $t_p > t_{cr}$, то с вероятностью $P_{\pi} = 0.95$ можно считать, что X_i содержит грубую погрешность и его необходимо исключить. Остальные значения будут считаться статистически достоверными.

Рассмотрим конкретный пример исключения оценки грубой погрешности. При соединении водосборника с всасывающим патрубком насоса пожарного автомобиля одним пожарным проводилось 18 испытаний, в результате получены следующие значения: 3,4; 3,5; 3,6; 3,6; 3,9; 4,0;...; 6,0; 6,2.

Примечание. Все значения записываются в ряд в порядке возрастания. Определим по всем 18 измерениям

$$\overline{X_i} = \frac{\sum_{i=1}^{n} X_i}{n} = 4.4 \cdot$$

Вычисляем оценку среднеквадратического отклонения:

$$S = \sqrt{\frac{1,0^2 + 0,9^2 + 0,8^2 + 0,5^2 + 0,4^2 + +1,6^2 + 1,8^2}{17}} = 0,52 \; .$$

Подставляя это значение в формулу для расчета $t_{\rm p}$, определим, какие результаты содержат грубую погрешность.

За X_i принимаются значения, наиболее удаленные от среднего значения X_i (рассчитывается без сомнительного результата, в данном случае без значения 23.2).

$$X_i = \frac{3,4+3,5+3,6+3,6+3,9+4,0+...+6,0}{17} = 4,6$$
;

$$t_p = \frac{6,2-4,6}{0,52} = \frac{1,6}{0,52} = 3,1$$
.

Затем по таблице 23.4 выбирается уровень значения $t_{\rm cr}$, который для n=17 равен 2,1. В данном случае $t_{\rm p} > t_{\rm cr}$ то есть > 2,1; следовательно результат считается статистически недостоверным, его необходимо исключить.

Задачу исключения грубых погрешностей необходимо решать методом последовательных приближений к условию $t_p < t_{c\tau}$, то есть оценка данного значения не содержит грубой погрешности, и проверка достоверности подученных значений прекращается. Все значения, не отвечающие этому условию, исключаются.

В процессе хронометража определяется необходимое количество измерений по формуле:

$$n_{\rm rp} = t_{\rm cr} \cdot S^2 / \varepsilon^2, \tag{23.6}$$

гле:

- t_{cr} — коэффициент Стьюдента, равный 1,96 с доверительной вероятностью $P_{u}=0.95;$

- є — ошибка эксперимента, принимается равной 10 % от средней;

- S — выборочная дисперсия.

Среднее арифметическое числа измерений (без измерений, содержащих грубые погрешности) определяется выражением (23.4), выборочная дисперсия выражением (23.5)

Подставляя эти значения в формулу (23.6), определяем требуемое количество измерений $n_{\rm rp}$ и сравним данный показатель с фактическим показателем количества измерений $n_{\rm p}$. Если $n_{\rm p} < n_{\rm rp}$, то количество измерений необходимо довести до требуемого, то есть должно соблюдаться условие $n_{\rm p} > n_{\rm rp}$.

Пусть по нашим данным раздела 4 из 18 измерений 12 содержат грубую погрешность и из дальнейших измерений исключаются. Тогда

$$\overline{X_i} = \frac{3,4+3,5+3,6+3,6+3,9+4,0}{6} = 3,65$$
;

$$S^{2} = \frac{0.25^{2} + 0.15^{2} + 0.05^{2} + 0.25^{2} + 0.35^{2}}{5} = 0.0545.$$

Подставим значение S^2 в формулу (23.6):

$$n_{TD} = 1,96^2 \cdot 0,054/0,36 = 0,57.$$

При условии $n_{\phi} > n_{\tau p}$ можно сделать вывод, что при проведении эксперимента проведено достаточное количество измерений времени выполнения работы для заданного упражнения или составляющего его элемента.

В дальнейших математических расчетах используется n_{φ} — количество измерений времени выполнения элемента, за исключением выскакивающих значений и результатов, используемых на освоение элемента.

23.4. Определение истинного значения измеряемой величины

Истинное значение измеряемой величины определяется по формуле:

$$\tau_{\Pi} = \overline{\tau_i} + \Delta \overline{\tau_i} , \qquad (23.7)$$

где: $\Delta \tau_i$ — доверительный интервал, который вычисляется по формуле:

$$\Delta \overline{\tau_i} = \frac{t_T \cdot S}{\sqrt{n_{\phi}}} \,, \tag{23.8}$$

где t_T — статистический коэффициент (см. табл. 23.4).

Если в экспериментах участвовал личный состав в возрасте более 30 лет, необходимо значение среднего и доверительного интервала измеряемой величины привести к базовому, т.е. $\overline{\tau_i}$ и $\Delta \overline{\tau_i}$ умножить на коэффициент, учитывающий возраст исполнителей (определяется по табл. 9.3).

В соответствии с изложенной выше схемой вычисляется время выполнения каждого элемента, если это время не определено ранее. Выполнение основных элементов боевого развертывания представлено в табл. 9.11, 9.12.

Определив время выполнения всех элементов, вычисляем нормативное значение для упражнения в целом. Вначале описываются условия выполнения упражнения. Затем уточняется вариант, окончательно закрепляются элементы упражнения за пожарными, и проставляется им время выполнения каждого элемента. Для этого составляется сводная таблица оценки результатов выполнения элементов упражнения аналогично табл. 23.5.

Получив итоговые данные, необходимо убедиться, что общее время выполнения элементов каждым пожарным приблизительно одинаково. Если обнаружатся большие расхождения, необходимо перераспределить элементы между пожарными.

Определив общее время и доверительный интервал, устанавливаем нормативную зависимость по максимальному времени, затраченному одним пожарным, т.е. если

$$\overline{\tau_5} = \overline{\tau_1} \pm \Delta \tau_i$$
,

нормативное время устанавливается по результатам, полученным для пятого пожарного. Тогда:

$$\overline{\tau_5}$$
 — хорошо;

$$\overline{\tau_5} + \Delta \overline{\tau_5}$$
 — удовлетворительно;

$$\overline{\tau_5} - \Delta \overline{\tau_5}$$
 — ОТЛИЧНО.

Таблица 23.5

Оценка результатов выполнения элементов упражнения (образец)

				•	•	,	,			
					Номер бо	Номер боевого расчета	эта			
				2		8		4	_	
Элементы упражнения										
	$\tau_{_{ m i}}$	$\Delta au_{ m i}$	$\tau_{_{ m i}}$	$\Delta au_{ m i}$	t i	$\Delta au_{ m i}$	$\tau_{_{\mathrm{i}}}$	$\Delta au_{ m i}$	τ i	$\Delta au_{ m i}$
Открыть дверцу отсека	1,2	0,1			1,2	0,1	1,2	0,1	1,2	0,1
Передвижение к отсеку ПА			9,0	0.00			0,5	0,075	0,4	90,0
Открепить HПР Ø77 мм	1,5	0,1			1,5	0,1			1,5	0,1
Открепить всасывающую сетку									2,5	0,16
Открепить всасывающие рукава			3,4	0,32						
Открепить лафетный ствол					2,8	0,16	2,8	0,16		
Снять НПР Ø77 мм	0,9	6,4							0,9	0,4
Снять всасывающий рукав			6,0	0,08					6,0	8,0
Снять лафетный ствол					4,0	0,45	4,0	0,45		
Передвижение с НПР на расстояние, м:										
- 40	10,4	0,12					13,2	1,36	10,4	0,12
- 80	26,4	2,72							26,4	2,72
Передвижение с лафетным стволом на 100					33,0	3,4				
M.										
Передвижение без ПТВ на расстояние, м:										
- 20										
09 -	4,0	9,0							12,0	1,8
и т.д. по другим элементам.										
Итого:	7.06	9.5	40,8	3,18	110,4	8,6	92.2	10,36	114,9	9,24

Или применительно к табл. 23.5:

$$\overline{\tau_5} = 114.9 - \text{хорошо};$$

$$\frac{1}{\tau_5} + \Delta \frac{1}{\tau_5} = 114,9 + 9,24 = 124,14$$
 — удовлетворительно;

$$\overline{\tau_5}$$
 – $\Delta \overline{\tau_5}$ = 114,9 — 9,24 = 104,66 — отлично.

При этом должно выполняться условие, что время затраченное на выполнение пожарным №5 ($\overline{\tau_5}$) уменьшить никоим образом нельзя.

Поскольку результаты получены в летнее дневное время для личного состава в возрасте до 30 лет, требуется учитывать влияние других факторов, для чего необходимо использовать поправочные коэффициенты.

Нормативы проходят опробование в отделениях, караулах по специально разработанной программе, в которой обоснованы количество и состав пожарных подразделений для проведения проверки, порядок выявления причин отклонения фактических затрат времени от нормативных. По результатам проверки нормативы корректируются, затем согласуются и утверждаются.

приложения

Приложение 1

ДОПУСКАЕМЫЕ СОКРАЩЕНИЯ ПРИ ВЕДЕНИИ СЛУЖЕБНОЙ ДОКУМЕНТАЦИИ

АСВ - аппарат на сжатом воздухе (изолирующий противогаз)

АЭС - атомная электростанция ВВ - взрывчатые вещества

ВМП - воздушно-механическая пена ГДЗС- газодымозащитная служба

ГПС - генератор (ствол) пены средней кратности

СПТ - служба пожаротушения

3Р3 - зона радиоактивного заражения 3Х3 - зона химического заражения КПП - контрольно-пропускной пункт ЛВЖ - легковоспламеняющаяся жилкость

ГЖ - горючие жидкости ГГ - горючие газы

НРТ - насадок распылитель турбинный

ОШ - оперативный штаб
ОВ - отравляющее вещество
ПСЧ - пункт связи части
ПК - пожарный кран
ПГ - пожарный гилрант

ПГ - пожарный гидрант ПРУ - противорадиационное укрытие

РВ - радиоактивные вещества РГ - разведывательная группа

РХР - радиационная и химическая разведка

РЗ - радиационное заражение

СУГ - сжиженные углеводородные газы

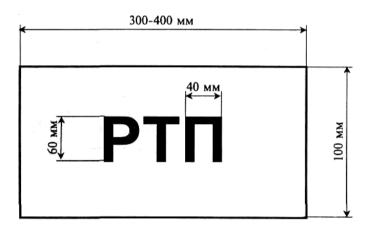
СДЯВ- сильнодействующие ядовитые вещества

С- связной

СИЗОД- средства индивидуальной защиты органов дыхания

СР - спасательные работы
 ХЗ - химическое заражение
 ЧП - чрезвычайное положение
 ЧС - чрезвычайная ситуация

ЦППС- центральный пункт пожарной связи ЦУС- центр управления силами и средствами


Приложение 2

ОПИСАНИЕ

нарукавной повязки

Нарукавная повязка для руководителя тушения пожара, начальника штаба, начальника боевого участка изготавливается из красного материала, на который наносится соответствующая надпись: РТП, НШ, НБУ белого цвета.

Нарукавная повязка для начальника тыла и связных изготавливается из белого материала, на который наносится соответствующая надпись: HT, C черного цвета.

Приложение 3

ЗНАКИ РАЗЛИЧИЯ НА КАСКАХ

1. Рядовой состав 2. Командир отделения 3. Начальник караула 4. Заместитель начальника части 5. Начальник части 50 6. Руководящий состав отряда 7. Руководящий состав управлений (отделов) ГПС МВ Δ , ГУВ Δ , УВ Δ субъектов Рос-УГПС сийской Федерации (красный т он) 50 8. Сотрудники ГПС МВ Δ , ГУВ Δ , УВ Δ субъектов Российской Федерации (белый т он)

9. Сотрудники ГУГПС МЧС России

30

Окончание прил. 3

Примечание: Трат арет наносится симметрично на обе стороны каски (спереди и сзади) красным цветом.

Приложение 4

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ

Наименование	Базовый символ
ПОЖАРНЫЕ И СПЕЦИАЛЬНЫЕ МАШИН	<u> </u> 2 НЫ
Автоцистерна пожарная (цвет — красный)	1111
i i i i i i i i i i i i i i i i i i i	
Автонасос пожарный	Fi S
	<u> </u>
Автолестница пожарная	
Автоподъемник пожарный: коленчатый телескопический	
Автомобиль рукавный пожарный	
	PB
Автомобиль связи и освещения пожарный	CO
Автомобиль технической службы пожарный	T
	<u> </u>
Автомобиль дымоудаления пожарный	(A)
Commence	
Станция автонасосная пожарная	□ c >
Автомобиль пожарный со стационарным лафетным стволом	→
Автомобиль — передвижной лафетный ствол	
Автомобиль аэродромный пожарный	A
· · · · ·	<u> </u>
Автомобиль пожарный пенного тушения	\otimes
Автомобиль пожарный комбинированного тушения	
r	
Автомобиль пожарный водоаэрозольного тушения	
Автомобиль пожарный порошкового тушения	
Автомобиль пожарный углекислотного тушения	
Автомобиль газоводяного тушения	ГВТ

Продолжение прил. 4 Машина на гусеничном ходу Пожарный танк (цвет — красный) Автомобиль газодымозащитной службы ГД3 Автомобиль водозащитный пожарный **B3** Автолаборатория пожарная ЛБ Автомобиль штабной пожарный ш Прицеп пожарный (красный) Корабль пожарный (красный) KΡ Катер пожарный (красный) Поезд пожарный (красный) Самолет пожарный (красный) Гидросамолет пожарный (красный) Вертолет пожарный (красный) Мотопомпа пожарная (красный): - переносная - прицепная Прицеп пожарный порошковый (красный) Приспособленный автомобиль для целей пожаротушения (контур синий, средняя полоса красная) Другая приспособленная техника для целей пожаротушения (контур синий, средняя полоса красная) ПОЖАРНО-ТЕХНИЧЕСКОЕ ВОО РУЖЕНИЕ, СПЕЦИАЛЬНЫЙ ИНСТРУМЕНТ Рукав пожарный напорный

Рукав пожарный всасывающий

......

	продолжение прил. 4
1	2
Маневренный ствол	→
Звено ГДЗС со стволом "Б" в подвале	4 50 ← n —
Ствол пожарный лафетный:	
- переносной	•4
- стационарный с водяными насадками	gSMOL SHILL
- порошковый	•
- стационарный с пенными насадками	
- возимый	0.590-00-0600
	⊗■ □
	◆
Подъемник-пенослив	
	⊗
Подъемник пенный с гребенкой генераторов ГПС-600	894
	884
Дымосос пожарный:	Ø
- переносной	
- прицепной	Ka
Лестница-палка	
Лестница-штурмовка	
Лестница пожарная выдвижная	
УСТАНОВКИ ПОЖАРОТУШЕНИЯ	
Стационарная установка пожаротушения (общая нелокальная	Λ -
защита помещения с автоматическим пуском)	\Diamond
Стационарная установка пожаротушения с ручным пуском	\Diamond
Установка пенного пожаротушения	♦
Установка водяного пожаротушения	(a)
Установка водоаэрозольного пожаротушения	

	Продолжение прил. 4
1	2
Станция пожаротушения	
Станция пожаротушения диоксидом углерода	
Станция пожаротушения прочим газом	
Установка газоаэрозольного пожаротушения	
Установка порошкового тушения	
Установка парового пожаротушения	
ОГНЕТУШИТЕЛИ	
Огнетушитель:	
- переносной (ручной, ранцевый)- передвижной	\triangle
УСТРОЙСТВА ДЫМОУДАЛЕНИЯ	
Устройство дымоудаления (дымовой люк)	[3]
Устройство дымотеплоудаления	(5 4)
Ручное управление естественной вентиляцией	(T)
ПУНКТЫ УПРАВЛЕНИЯ И СРЕДСТВА СВ	ЯЗИ
Пост регулирования движения (регулировщик) С буквами:	
КПП — контрольно-пропускной пункт	KNN
Р — регулировщик	P
ПБ — пост безопасности ГДЗС (контур — красный, буквы — черный)	ПБ
Радиостанции: подвижная	
Подолжних	Ž
переносная	On
стационарная	\$ 0** \$
Громкоговоритель	

красный)

	Продолжение прил. 4
1	2
Пожар наружный с зоной задымления (штрих красный, внешний контур — синий)	
Место возникновения пожара (очаг) -красный	
Отдельный пожар на местности и направление его распространения (красный)	<u>r</u>
Огневой шторм (красный)	
Зона пожаров и направление ее распространения (красный)	
Направление развития пожара (контур красный)	
Решающее направление действия сил и средств пожаротушения (цвет черный)	
Границы боевого участка (красный, обозначение — черный)	БУ-1
Границы зоны возможных разрушений (синий)	
Обвал, завал, обрушение зданий и сооружений (синий)	The state of the s
Участок местности, зараженный СДЯВ (контур синий, зона — желтый)	хлор
Точка замера уровня радиации (синий) с указанием уровня радиации, времени и даты замера (черный)	15 p/ч 18.00 7.7.
СООРУЖЕНИЯ, КОММУНИКАЦИИ, ВОДОИСТ	ГОЧНИКИ
Стационарная лестница у здания	
Лестничная клетка в этаже	
Лестничная клетка, сообщающаяся с подвалом	
Лестничная клетка, сообщающаяся с чердаком	
Печи	
Вентиляционная шахта	
Лифт	\boxtimes
Нефтебаза, склад топлива	\otimes
Резервуар	5
Убежище (черный)	30 80

	продолжение прил. 4
1	2
Противорадиационное укрытие (черный)	Ç
Подвальное помещение	
Полное разрушение здания (объема, сооружения, дороги, газо-	>-4
провода и т. п.)	l 🔀
Одноколейная железная дорога	
Двухколейная дорога	
Переезд под железной дорогой	- 11 -
Переезд на одном уровне без шлагбаума	-}[-
Переезд над железной дорогой	-
Переезд на одном уровне со шлагбаумом	
Дорога	
Трамвайная линия	++++++++++
Водопровод подземный	_ B _
Водопровод наземный	—— В —
Газопровод	— Г —
Нефтепровод	—— Н—
Канализация	K_
Мост на плавучих опорах	<u>пмп</u> 120 60
Паромная переправа	згсп
Металлическая ограда	
Железобетонная ограда	-0-0-0-0-
Каменная ограда	
Ограждение проезжей части дороги	TITITITITI
Земляной ров (канава)	111111111111
Земляная насыпь (обвалование)	111111111111
	111111111111
Пожарный гидрант (номер, вид и диаметр сети, цвет синий)	ПГ-5. К-180
Кольцевая водопроводная магистраль (синий)	K-150

Окончание	прил.	4
O ROTT IGITINO	11000	•

	Окончание прил. ч
1	2
Тупиковая водопроводная магистраль (синий)	T-100
Внутренний пожарный кран (номер, цвет синий)	ПК-12
Участок береговой полосы, где возможен забор воды пожарными машинами (40 -протяженность, м, цвет — красный, обозначение — черный, контур реки — цвет синий)синий)	40
Пруд (цвет – синий)	
Пожарный водоем (объем в м3, цвет синий)	500
Пирс (цвет — черный; 3 — количество одновременно устанавливаемых пожарных машин)	3
Колодец синий, внешний контур — черный	
Водонапорная башня (скважина), объем 5 м3	5
Закрытый водоисточник (дебит 8 м3 в сутки)	© ⁸

Приложение 5

АКТ О ПОЖАРЕ

(составляется не менее чем в 2 экз.)
Комиссия в составе
составила настоящий акт о пожаре, происшедшем "" 20 г.
Наименование объекта
Принадлежность объекта
Адрес объекта
Время обнаружения пожара чмин
Место возникновения пожара
Кто обнаружил пожар и каким способом сообщил о нем в пожарную
охрану № телефона
охрану № телефона Дата и время поступления сообщения о пожаре в
пожарную охрану чмин
Время прибытия 1-го подразделения чмин
Дата и время локализации пожара в чмин на плм²
Датаи время ликвидации пожара вчмин
Обстановка к моменту прибытия подразделений пожарной охраны
(площадь пожара, пути и скорость его распространения, угроза людям, животным,
опасность обрушений и взрывов, действия населения) Силы и средства, применявшиеся при тушении пожара:
Участники тушения пожара
Участники тушения пожара (сотрудники и работники ГПС, ДПО,
другие противопожарные формирования, население)
Количество основных и специальных отделений
Количество отделений ГДЗС
Число участников тушения
Тип, количество и принадлежность пожарной техники
ГПССВП
Суммарный фактический расход воды
Количество, вид и результат использования аэрозольных огнетушителей
количество, вид и результат использования аэрозольных отнетушителей

Работа установок пожарной автоматики	
Огнетушащие вещества, применявшиеся при тушении	
Виды водоисточников, использованных при тушении пожара	
Последствия пожара:	
Погибло людей: всего, в т. ч. детей, работник	COE
ПО	
Сведения о погибших:	
Получили травмы: всего, в т. ч детей, работник	KOE
ПО	
Сведения о травмированных:	
Уничтожено/(повреждено) пожаром: строений/	
жилых квартир, комнат	д.,
жилых квартир, комнат	M ₂ ,
техники / ед.; c/х культур / (вид и количество)	
с/х культур//	
ПОГИБЛО ЖИВОТНЫХ (вид и количество)	
(вид и количество)	
Условия, способствовавшие развитию пожара	
Ущерб от пожара	5.
(установленный или ориентировочный)	
Причина пожара	
(установленная или предполагаемая)	
Лица, виновные в возникновении пожара, принятые меры	
Спасено на пожаре:	
Людей Техникиед. Голов скота	
Материальных ценностей тыс. руб.	
Акт о пожаре направлен для проверки в	
Особые замечания	
Подписи членов комиссии:	
Экземпляры акта получили:	

ЛИТЕРАТУРА

- 1. Иванников В.П., Клюс П.П., Справочник РТП.-М.: Стройиздат, 1987 г.
- 2. Теребнев В.В., Панков Ю.И., Журавлев Ю.Г., Методические указания к выполнению упражнения и контрольных работ по курсу ПСП. М-: ВИПТШ МВД СССР, 1992 г.
- 3. Теребнев В.В., Гундар В.В., Бадер Ю.А. "Методические указания по определению времени введения сил и средств." М.: 1994 г. ВИПТШ МВД СССР
- 4. Пожарная тактика. Под редакцией Повзика Я.С.-М.: ВИПТШ МВД СССР, 1984 г.
- 5. Харисов Г.Х. Аварийно-спасательные работы. Курс лекций. М.:-МИПБ МВД России, -1999 г.-110 с
- 6.Пожарные автомобили предприятий России. Сборник нормативных документов. Вып. 8 М.: ФГУ ВНИИПО МВД России.-2000 г.-346 с
- 7. Нормирование труда. Под редакцией Генкина Б.М. — М.: Экономика, 1987 г.
- 8.Основы инженерной психологии. Под редакцией Ломова Б.Ф. М.: Высшая школа, 1986 г.
 - 9.Боевой устав пожарной охраны. Приказ МВД РФ №257 М., 1995 г.
- 10. Наставление по ГДЗС Государственной противопожарной службы МВД РФ. Приказ № 234 от 30.04.96.
- 11. Наставление по организации профессиональной подготовки органов МВД РФ. Приказ № 110 от 10.07.91.
- 12. Об организации работы тыла на пожаре. Информационное письмо ГУПО МВД СССР № 148. М, 1985 г.
- 13. Положение об опорных пунктах пожаротушения государственной противопожарной службы МВД России. МВД РФ, Приказ №245 от 2.05.1996 г.
- 14. Указания по тактической подготовке начальствующего состава пожарной охраны. МВД СССР. М., 1988 г.
- 15. Программа подготовки начальствующего состава частей и гарнизонов пожарной охраны. Приказ ГУГПС МВД РФ №40 от 28.12.95.
- 16. Организация и проведение занятий с личным составом ГДЗС ПО МВД СССР. Методические указания. М., 1990 г.
- 17. Положение о порядке аттестации газодымозащитников в органах управления, подразделениях ГПС МВД России и пожарно-технических образовательных учреждениях МВД России на право ведения боевых действий по тушению пожаров в непригодных для дыхания среде. Приказ ГУГПС МВД России №38 от 30.06.97г.
- 18. Рекомендации по тушению пожаров спиртов в резервуарах. ВНИИПО МВД СССР. М., 1971 г.

- 19. Указания но тушению пожаров на открытых технологических установках по переработке горючих жидкостей и газов. М.: ГУПО МВД СССР, 1982.
- 20. Руководство по тушению пожаров нефти и нефтепродуктов в резервуарах. М.: ГУГПС, ВНИИПО, МИПБ МВД РФ. 1999.
- 21. Временные рекомендации по тушению пожаров в зданиях повышенной этажности. М.: ГУПО, ВНИИПО МВД СССР, 1967.
- 22. Рекомендации по тушению пожаров газовых и нефтяных фонтанов. М., 1976.
- 23. Дополнение к Рекомендациям по тушению пожаров газовых в нефтяных фонтанов. 1983.
- 24. Рекомендации по тушению пожаров газовых и нефтяных фонтанов вихрепорошковым способом и пневматическим порошковым пламяподавителем ППП-200. ГУПО МВД СССР, 1987.
- 25. Рекомендации по методам и тактике тушения пожаров на воздушных судах, на аэродромах гражданской авиации. М., 1995.
- 26. Рекомендации по тушению пожаров на открытых складах лесоматериалов. ГУГПС, ВИПТШ И ВНИИПО МВД России. М., 1995.
- 27. Определение безопасных расстояний от фронта пламени при тушении пожаров на открытом пространстве. Методические рекомендации. М.: ВНИИПО МВД СССР, 1989.
- 28. Таблица по интенсивности подачи огнетушащих веществ при тушении пожаров передвижной техникой: НПБ 201-96. М.: ГУГПС, 1996.
- 29. Особенности ведения боевых действий и проведение первоочередных аварийно-спасательных работ, связанных с тушением пожаров на различных объектах. Рекомендации. М., ВНИИПО, 1997.
- 30. Инструкция по тушению пожаров на действующих электроустановках электростанций и подстанций РАО ЕЭС России. М: ВНИИПО, ГУГПС МВД России, 1997.
- 31. Наставление по использованию передвижной пожарной техник" для тушения пожаров горючих жидкостей в резервуарах подслойным способом. ГУГПС. ВНИИПО. ВИПТШ МВД 1995.
 - 32. Повзик Я.С. Справочник РТП. M.: ЗАО "Спецтехника", 2000.
 - 33. Боевой устав пожарной охраны, 1995г.
- 34. Иванников В.П., Клюс П.П. Справочник руководителя тушения пожара. М.Стройиздат, 1987, 288с.
- 35. ПовзикЯ.С, Панарин В.М. Тактическая и психологическая подготовка руководителя тушения пожара. М., Стройиздат, 1988, 112с.
 - 36. Устав службы пожарной охраны, 1995.
- 37. Перечень основных руководящих документов по организации службы, подготовки и тушению пожаров. (Приложение 10 Справочника).
 - 38. НПБ 157-97 "Боевая одежда пожарных".
 - 39. НПБ 161-97 "Специальная защитная обувь пожарных".
 - 40. НПБ 161-162-97 "Специальная защитная одежда пожарных".

- 41. НПБ 163-97 "Пожарная техника. Основные пожарные автомобили".
- 42. НПБ 164-97 "Техника пожарная. Кислородные изолирующие противогазы (респираторы) для пожарных.
- 43. НПБ 165-97 "Дыхательные аппараты со сжатым воздухом для пожарных".
 - 44. ГОСТ 12.2. 047 "Огнетушители".
 - 45. ГОСТ 15150 "Спасательное устройство" ППС4-20.
- 46. Особенности ведения боевых действий и проведение первоочередных аварийно-спасательных работ, связанных с тушением пожаров на различных объектах. Рекомендации, М:ВНИИПО, 1997.
- 47. Пожарная техника. Основные пожарные автомобили. ГУГПС МВДРоссии. М.1997,102с.
- 48. Богданов М.И., Кокарев В.Ю. Действия сил и средств на пожаре. Санкт-Петербург, 1994, 56с.
- 49. Справочное пособие водителя пожарного автомобиля. ГУГПС МВД России. М. 1997-125с.
- 50. Некоторые методические рекомендации руководителю тушения пожара. УГПС, ГУВД г.Москва. М.1983, 102с.
 - 51. Cобурь C.B. Огнетушители. M.:Пожкнига, 2004, 96 с., ил.
 - 52. Повзик Я.С. Пожарная тактика, ЗАО "Спецтехника". М. 1999,415с
- 53. Изменения и дополнения к БУПО-95. Приложение к приказу МВД России 477 от 6 мая 2000г.
- 54. Приказ МВД РФ № 257 от 05.07.1995 г. Приложение 1 "Об утверждении Боевого Устава пожарной охраны".
- 55. Приказ МВД РФ № 234 от 30.04.1996 г. "Об утверждении нормативных актов по газодымозащитной службе Государственной противопожарной службы МВД России. Наставление по ГДЗС ГПС МВД России".
- 56. Приказ МВД СССР №78 от 22.02.1999 г. "Об утверждении типовой организационной структуры и табеля положенности материальных средств сводных отрядов противопожарной службы".
- 57. Приказ ГУГПС №86 от 09.11.1999 г. Приложение 1 "Правила о порядке аттестации личного состава Государственной противопожарной службы МВД России на право работы в средствах индивидуальной защиты органов дыхания и зрения".
- 58. Приказ ГУГПС №86 от 09.11.1999 г. Приложение 2 "Программа специального первоначального обучения личного состава системы Государственной противопожарной службы МВД России на право работы в средствах индивидуальной защиты органов дыхания и зрения".
- 59. Наставление по пожарно-строевой подготовке. Ярославль, Верхневолжское книжное издательство, 1974, -102 с.
- 60. "Организация и проведение занятий с личным составом газодымозащитной службы пожарной охраны МВД СССР": Методические указания. М.; ВНИИПО МВД СССР, 1990 г. -80 с.
 - 61. Об организации работы тыла на пожаре. Инф. письмо ГУПО МВД

CCCP №148 1985 г

- 62. Рекомендации по тушению пожаров в подземных сооружениях метрополитена. М., ГУПО МВД СССР, 1978.
- 63. Первая помощь пострадавшим при пожаре. М., Стройиздат, 1983, -64 с.
- 64. Специальная медицинская подготовка личного состава частей и гарнизонов пожарной охраны: Методические рекомендации. М., ВНИИПО МВД СССР, 1987, -65 с.
- 65. Дзикас Н.М., Кравченко К.И., Шебеко Н.Д. и др. Пожарная техника.Ч. II. Пожарное оборудование. М.: ЦНИИТЭ-строймаш, 1980, 278 с
- 66. Юхименко В.Г. Начальнику дежурного караула о противопожарном водоснабжении. М., Стройиздат, 1989, -64 с.
- 67. Инструкция по применению в подразделениях пожарной охраны изолирующих дыхательных аппаратов на сжатом воздухе.
- 68. Пожарная техника, ч. 2. Каталог-справочник. М., ЦНИИТЭ, Строймаш, 1980, -279 с.
- 69. Абдурагимов И.М. и др. Физико-химические основы развития и тушения пожара. М., Стройиздат, 1987, -288 с.
- 70. Минаев Н.А. Пожарно-техническое вооружение. М., Стройиздат, 1974.
- 71. Приказ МВД СССР от 09.10.1989 г. №241 "Об утверждении наставления по службе связи пожарной охраны".
- 72. Федеральный закон "О пожарной безопасности" 69-ФЗ от 21 декабря 1994г.
- 73. Федеральный закон "Об основах охраны труда в Российской Федерации" 181-ФЗ. от 17.07.99 года.
- 74. Федеральный закон "О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера" декабрь 1994г.
- 75. Правила пожарной безопасности в Российской Федерации ППБ-01-93. Приказ МВД РФ от 14.12.1993г.
- 76. ССБТ. "Пожарная безопасность" ГОСТ 12.1.004-91. ИПК издательство стандартов. М.96
- 77. Изменения и дополнения в Правила пожарной безопасности в Российской Федерации ППБ-01-93. Приказ МВД России 282 от 25.07.1995г.
 - 78. Боевой устав пожарной охраны. Приказ МВД РФ 257.М.,1995.
- 79. Устав службы пожарной охраны МВД РФ. Приказ МВД РФ. 257. М., 1995
- 80. Наставление по технической службе ГПС МВД РФ. Приказ 34 от 26.01.96.
- 81. Наставление по ГДЗС Государственной противопожарной службы МВД РФ. Приказ 234 от 30.04.96.
- 82. Наставление по организации профессиональной подготовки органов МВД РФ. Приказ 110 от 10.07.91.

- 83. Инструкция о взаимодействии между подразделениями пожарной охраны МО РФ и МВД РФ при тушении пожаров. Приказ МО РФ и МВД РФ 350/334 от 13.07.99.
- 84. Инструкции о взаимодействии УГПС ГУВД г. Москвы и Московского метрополитена при тушении пожаров и связанных с ними аварийно-спасательными работами в подвижном составе и на объектах метрополитена в городе Москве. Письмо УГПС 25/4/776 от 14.02.97г.
- 85. Соглашение с Департаментом Морского флота РФ "О порядке осуществления ГПН и других функций пожарной охраны МВД РФ", 1/2920 от 23.06.94.
- 86. Соглашение о сотрудничестве и порядке взаимодействия в области пожарной безопасности на объектах ФСБ. от 01.10.96,
- 87. Положение о расследовании и учете несчастных случаев на производстве. Постановление Правительства РФ от 11.03.99 года 279.
- 88. Правила по охране труда в подразделениях Государственной противопожарной службы МВД России. ПОТ РО-78-001 -96. Приказ 285 от 25.06.96.
- 89. Об организации работы тыла на пожаре. Информационное письмо ГУПО МВД СССР 148. М., 1985.
- 90. Положение об опорных пунктах пожаротушения государственной противопожарной службы МВД России. МВД РФ. Приказ 245 от 12.05.1996.
- 91. Указания по тактической подготовке начальствующего состава пожарной охраны. МВД СССР. М., 1988.
- 92. Программа подготовки начальствующего состава частей и гарнизонов пожарной охраны. Приказ ГУГПС ВД РФ 40 от 28.12.95.
- 93. Организация и проведение занятий с личным составом ГДЗС ПО МВД СССР. Методические указания. М., 1990.
- 94. Совершенствование работы личного состава подразделений пожарной охраны МВД СССР.
- 95. Методические рекомендации. ВНИИПО, ВИПТШ МВД СССР, М., 1991.
- 96. Инструкция по эксплуатации пожарных рукавов. ГУГПС, ВНИИПО МВД РФ. М., 1994.
- 97. Указания по составлению в частях и гарнизонах пожарной охраны оперативных планов и карточек тушения пожаров. ГУПО МВД СССР, М., 1970.
 - 98. Инструкция по изучению пожаров. ГУПО МВД СССР. М., 1986.
- 99. Положение о порядке аттестации газодымозащитников в органах управления, подразделениях ГПС МВД России и пожарно-технических образовательных учреждениях МВД России на право ведения боевых действий по тушению пожаров в непригодных для дыхания среде. Приказ ГУГПС МВД России 38 от 30.06.97г.
- 100. О мерах по совершенствованию деятельности специализированных подразделений по тушению крупных пожаров ГПС МВД, ГУВД,

- УВД субъектов РФ. Приказ МВД 1 от 03.01.96 года.
- 101. Инструкция о взаимодействии между органами управления, подразделениями ГПС МВД РФ и вневедомственной охраны при органах внутренних дел РФ. Совм. приказ 3/4 от 15.01.97г.
- 102. Положение о функциональной подсистеме "Противопожарные и аварийно-спасательные работы" единой Государственной системы предупреждения и ликвидации чрезвычайных ситуаций". Совм. письмо 1/21880 от24и31.12.96г.
- 103. Рекомендации по тушению пожаров спиртов в резервуарах. ВНИИПО МВД СССР. М., 1971.
- 104. Рекомендации по выбору оптимальных значений интенсивности подачи пены из пенообразователей ПО-1Д, ПО-3АИ, САМПО для тушения алифатических спиртов, монокарбоновых кислот, углеводородов и их производных, ВНИИПО МВД СССР. М., 1982.
- 105. Рекомендации по предупреждению и тушению пожаров в резервуарах с понтоном и плавающей крышей. ГУПО МВД СССР М., 1982
- 106. Указания по тушению пожаров на объектах переработки сжиженных газов с помощью передвижной пожарной техники. ГУПО МВД СССР, М., 1982г.
- 107. Указания по тушению пожаров на открытых технологических установках по переработке горючих жидкостей и газов. ГУПО МВД СССР 1982.
- 108. Рекомендации по обеспечению пожарной безопасности и тактике тушения пожаров резервуаров на свайных основаниях для условий Западной Сибири и Крайнего Севера. ГУПО ВНИИПО, ВИПТШ МВД СССР М., 1986.
- 109. Определение нормативного запаса пенообразователя для тушения горючих жидкостей в резервуарах (Рекомендации). ВНИИПО МВД СССР 1986.
- 110. Руководство по тушению пожаров нефти и нефтепродуктов в резервуарах. ГУГПС, ВНИИПО, МИПБ МВД РФ. М., 1999.
- 111. Временные указания по тушению пожаров в кабельных тоннелях и помещениях высокократной ВМП. ВНИИПО МВД СССР. М., 1959.
- 112. Временные рекомендации по тушению пожаров передвижной пожарной техникой в высотных механизированных стеллажных складах, оборудованных автоматическими установками пожаротушения. М, ГУПО МВД СССР, 1985.
- 113. Перечень оперативной документации по организации пожаротушения в населенных пунктах сельской местности. М., ГУПО МВД СССР 7/2/3597 1983.
- 114. Временные рекомендации по тушению пожаров в зданиях повышенной этажности. ГУПО, ВНИИПО МВД СССР. М., 1967.
- 115. Рекомендации по тушению пожаров газовых и нефтяных фонтанов. М., 1976.

- 116. Дополнение к Рекомендациям по тушению пожаров газовых и нефтяных фонтанов. 1983.
- 117. Рекомендации по тушению пожаров газовых и нефтяных фонтанов вихрепорошковым способом и пневматическим порошковым пламеподавителем ППП-200. ГУПО МВД СССР, 1987.
- 118. Рекомендации по методам и тактике тушения пожаров на воздушных судах, на аэродромах гражданской авиации. М., 1995.
- 119. Руководство по организации и проведению аварийноспасательных работ на территории и в районе аэропортов ГА. РИО МГАСССР, 1976.
- 120. Рекомендации по обеспечению пожарной безопасности силосов и бункеров на предприятиях по хранению и переработке зерна. МПХ СССР, 1989.
- 121. Временные рекомендации по тушению пожаров в подземных сооружениях метрополитена. ГУПО МВД СССР. М., 1978.
- 122. Рекомендации по тушению пожаров в железнодорожных тоннелях. М., 1997.
- 123. Рекомендации по противопожарной защите объектов и подвижного состава с опасными грузами. УВО и ВНИИЖТ МПС РФ. М., "Транспорт", 1994.
- 124. Рекомендации по тушению пожаров на железнодорожном транспорте. ЦУО-1.65. М, 1995.
- 125. Рекомендации по противопожарной защите железнодорожных станций. УВО, ВНИИЖТ МПС РФ. М., 1996.
- 126. Правила безопасности и порядок ликвидации аварийных ситуаций с опасными грузами при перевозке их по железным дорогам. МПС, МЧС, Федеральный горный и промышленный надзор России, 03-35/287 от 28.10.96 года.
- 127. Рекомендации по тушению пожаров на открытых складах лесоматериалов. ГУГПС, ВИПТШ И ВНИИПО МВД России. М., 1995.
- 128. Правила пожарной безопасности в лесной промышленности. ППБО, 157-90,1992.
- 129. Инструкция по авиационной охране лесов. Утверждена Приказом Федеральной службы лесного хозяйства России 318 от 29.11.93 г.
- 130. Сборник нормативных актов по пожарной безопасности в лесах Российской Федерации. ФСЛХР. М., 1995 г.
- 131. Указания по обнаружению и тушению лесных пожаров. Утверждены и введены в действие на территории РФ Приказом Федеральной службы лесного хозяйства России 100 от 30.06.95 г.
- 132. Рекомендации по средствам и способам тушения некоторых кремнийорганических соединений. ВНИИПО МВД СССР. М, 1980.
- 133. Рекомендации по применению пены из промышленных пенообразователей для тушения простых и сложных эфиров. ВНИИПО МВД СССР. М" 1983.

- 134. Выбор оптимальной интенсивности подачи пены для тушения органических растворителей. Рекомендации. ВНИИПО МВД СССР. М., 1995
- 135. Оптимизация параметров огнетушащей эффективности пенных средств для тушения пожаров углеводородных жидкостей. Методические рекомендации. ВНИИПО МВД СССР. М., 1987.
- 136. Расчет интенсивности подачи пены при тушении смесей углеводородных жидкостей. Методические рекомендации. ВНИИПО МВД СССР. М., 1990.
- 137. Определение безопасных расстояний от фронта пламени при тушении пожаров на открытом пространстве. Методические рекомендации. ВНИИПО МВД СССР. М., 1989.
- 138. Проектирование и применение установок пожаротушения водой аэрозольного распыла. Рекомендации. ВНИИПО МВД СССР. М., 1991.
- 139. Положения о Службе пожаротушения (СПТ). Приказ МВД 67,1993.
 - 140. Наставление по службе связи ГУГПС МВД России, 1999.
- 141. Наставление по использованию передвижной пожарной техники для тушения пожаров горючих жидкостей в резервуарах подслойным способом. ГУГПС, ВНИИПО, ВПТШ МВД, 1995.
- 142. Инструкция по тактике применения ручных генераторов объемного пожаротушения оперативными подразделениями пожарной охраны. ГУГПС МВД России, 1994.
- 143. Рекомендации по действиям объектовых, территориальных, региональных специализированных подразделений пожарной охраны при тушении пожара и ликвидации аварий на объектах по производству ВВ, порохов, ТРТ и снаряжения боеприпасов. ГУГПС, ВНИИПО МВД России, 1993.
- 144. Инструкция по приспособлению и использованию для тушения пожаров машин и агрегатов, применяемых в сельскохозяйственном производстве. ГУГПС МВД России, 1981 г.
- 145. Обеспечение пожарной безопасности объектов хранения и переработки сжиженных углеводородных газов (СУГ). Рекомендации. ГУГПС, ВНИИПО МВД России, 1999г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ	
1. ОГНЕТУШАЩИЕ ВЕЩЕСТВА И МАТЕРИАЛЫ	
1.1. Огнетушащие вещества охлаждения	. 8
1.2. Огнетушащие вещества изоляции	
1.2.1. Пенообразователи и пены	
1.2.2. Огнетушащие порошковые составы (ОПС)	. 16
1.3. Огнетущащие средства разбавления	
2. ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРОВ	
ПОДАЧИ ОГНЕТУШАЩИХ ВЕЩЕСТВ	26
2.1. Приборы подачи воды	26
2.2. Пожарные напорные рукава	29
2.3. Передвижные и переносные огнетушители	. 30
2.3. Передвижные и переносные огнетушители	
ПОЖАРНЫХ АВТОМОБИЛЕЙ	. 35
4. СХЕМЫ БОЕВОГО РАЗВЕРТЫВАНИЯ ОСНОВНЫХ ПОЖАРНЫХ	
АВТОМОБИЛЕЙ*5. НОРМЫ УКОМПЛЕКТОВАННОСТИ ПОЖАРНЫХ	. 50
5. НОРМЫ УКОМПЛЕКТОВАННОСТИ ПОЖАРНЫХ	
АВТОМОБИЛЕЙ ПОЖАРНО-ТЕХНИЧЕСКИМ ВООРУЖЕНИЕ	Μ,
ОБОРУДОВАНИЕМ И ИНВЕНТАРЕМ	
6. ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СПЕЦИАЛЬНЬ	
ПОЖАРНЫХ АВТОМОБИЛЕЙ	67
6.1. Типы специальных пожарных автомобилей	67
6.2. Тактико-технические характеристики специальных пожарных	
автомобилей	. 68
7. ОСНОВНЫЕ СХЕМЫ БОЕВОГО РАЗВЕРТЫВАНИЯ НА	
СПЕЦИАЛЬНЫХ ПОЖАРНЫХ АВТОМОБИЛЯХ	. 78
8. НОРМЫ УКОМПЛЕКТОВАННОСТИ СПЕЦИАЛЬНЫХ	
ПОЖАРНЫХ АВТОМОБИЛЕЙ ПОЖАРНО-ТЕХНИЧЕСКИМ	
ВООРУЖЕНИЕМ, ОБОРУДОВАНИЕМ И ИНВЕНТАРЕМ	81
9. ОСНОВНЫЕ ПАРАМЕТРЫ, ВЛИЯЮЩИЕ НА ВРЕМЯ БОЕВОГО	
РАЗВЕРТЫВАНИЯ	
10. ОСНОВНЫЕ ПАРАМЕТРЫ ПОЖАРА	
11. ИНТЕНСИВНОСТЬ ПОДАЧИ ОГНЕТУШАЩИХ ВЕЩЕСТВ 1	101
12. ОРИЕНТИРОВОЧНЫЕ НОРМАТИВЫ НЕОБХОДИМОЙ	
ЧИСЛЕННОСТИ ЛИЧНОГО СОСТАВА ДЛЯ ВЫПОЛНЕНИЯ	
НЕКОТОРЫХ РАБОТ НА ПОЖАРЕ1	107
13. ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИБОРОВ	
ГДЗС И ПАРАМЕТРЫ РАБОТЫ В НИХ 1	109
14. ТАКТИКО-ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОЖАРНЫХ	
ПОЕЗЛОВ CVЛОВ И REPTOЛЕТОВ	112

15. ОБЩИЕ ПОНЯТИЯ О ТАКТИЧЕСКИХ ВОЗМОЖНОСТЯХ	
ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ	. 114
16. ОЦЕНКА ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ ПО РЕАЛИЗАЦИИ	
СВОИХ ТАКТИЧЕСКИХ ВОЗМОЖНОСТЕЙ ПО БОЕВОМУ	
РАЗВЕРТЫВАНИЮ	. 117
17. ОЦЕНКА ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ ПО РЕАЛИЗАЦИИ	
СВОИХ ТАКТИЧЕСКИХ ВОЗМОЖНОСТЕЙ ПРИ ПОДАЧЕ	
ОГНЕТУШАЩИХ СРЕДСТВ	147
17.1. Определение тактических возможностей пожарных подразделе-	. 1 17
ний без установки автомобилей на водоисточник	147
17.2 Определение тактических возможностей подразделений при	. 177
установке автомобилей на водоисточники	140
17.3 Примеры определения тактических возможностей при полдаче	. 17)
огнетушащих веществ	151
18. ОЦЕНКА ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ ПО РЕАЛИЗАЦИИ	. 131
ТАКТИЧЕСКИХ ВОЗМОЖНОСТЕЙ ПО СПАСАНИЮ ЛЮДЕЙ	f 155
18.1 Результаты экспериментов по спасанию людей из зданий	
18.2 Методика расчета сил и средств для спасания людей при пожара	
в многоэтажных зданиях и сооружениях*	
18.2.1. Спасание людей при помощи эластичного рукава, коленчатого	
подъемника, автолестницы	
18.2.2. Спасание людей выносом на руках	
18.2.3. Спасание людей при помощи спасательной веревки	
18.3 Примеры расчета сил и средств для спасания людей при пожара	X
в многоэтажных зданиях и сооружениях	. 165
18.3.1. Спасание людей при помощи эластичного рукава, коленчатого	
подъемника, автолестницы.	. 165
19. ОЦЕНКА ПОЖАРНЫХ ПОДРАЗДЕЛЕНИЙ ПО РЕАЛИЗАЦИИ	
ТАКТИЧЕСКИХ ВОЗМОЖНОСТЕЙ ПО ВСКРЫТИЮ И	
РАЗБОРКЕ КОНСТРУКЦИЙ	. 171
20. ТАКТИЧЕСКИЕ ВОЗМОЖНОСТИ ПОЖАРНЫХ ПОДРАЗДЕ-	
ЛЕНИЙ ПРИ ИСПОЛЬЗОВАНИИ ИНДИВИДУАЛЬНЫХ	
СРЕДСТВ ЗАЩИТЫ	
20.1 Результаты экспериментов работы звеньев ГДЗС	. 175
20.2 Факторы, снижающие тактические возможности пожарных	
подразделений при работе в СИЗОД	
20.3. Расчет параметров работы в СИЗОД	
21. РАСЧЕТ СИЛ И СРЕДСТВ ДЛЯ ТУШЕНИЯ ПОЖАРОВ	
22. ПРИМЕРЫ РЕШЕНИЯ ПОЖАРНО-ТАКТИЧЕСКИХ ЗАДАЧ	
23. НОРМИРОВАНИЕ БОЕВЫХ ДЕЙСТВИЙ	
23.1 Последовательность нормирования боевых действий	. 218
23.2. Подготовка к проведению эксперимента.	. 218
23.3 Хронометраж освоения элементов боевых действий	
23.4. Определение истинного значения измеряемой величины	225

228
228
229
230
232
241
243
251

